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Abstract

Bismut and Zhang (Math Ann 295(4):661-684, 1993) establish a mod Z embedding formula
of Atiyah—Patodi—Singer reduced eta invariants. In this paper, we explain the hidden mod Z
term as a spectral flow and extend this embedding formula to the equivariant family case.
In this case, the spectral flow is generalized to the equivariant Chern character of some
equivariant Dai—Zhang higher spectral flow.
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1 Introduction

Leti: ¥ — X be an embedding between two odd dimensional compact oriented spin
manifolds. For any Hermitian vector bundle p over Y carrying a Hermitian connection,
under a natural assumption, Bismut and Zhang [13] establish a mod Z formula, expressing
the Atiyah—Patodi—Singer reduced eta invariant [2] of certain direct image of p over X,
through the reduced eta invariant of the bundle © over Y, up to some geometric Chern—
Simons current.

In this paper, we explain the hidden mod Z term as a spectral flow in Bismut—Zhang
embedding formula and extend this embedding formula to the equivariant family case. In this
case, the spectral flow is generalized to the equivariant Chern character of some equivariant
Dai—Zhang higher spectral flow [18].

The main motivation of this generalization is to look for a general Grothendieck—Riemann—
Roch theorem in the equivariant differential K-theory, which is already established in many
important cases [15,16,22]. Roughly speaking, the differential K-theory is the smooth version
of the arithmetic K-theory in Arakelov geometry. Our main result here is expected to play the
same role in the equivariant differential K-theory of the Bunke—Schick model [15,16,24] as
the Bismut-Lebeau embedding formula [11] does in the proof of Arithmetic Grothendieck—
Riemann—Roch theorem in Arakelov geometry.

In this paper, we do not assume the manifold is spin or spin‘. We consider the general
Clifford modules.

Let 7: W — B be a smooth submersion of smooth oriented manifolds with compact
fibres Y. Let TY = TW/B be the relative tangent bundle to the fibres Y. Let TﬂH W be
a horizontal subbundle of TW. Let gTY be a Riemannian metric on TY. Let C(TY) be
the Clifford algebra bundle of (T'Y, gY) and (&, h%) be a Z,-graded self-adjoint C(T'Y)-
module with Clifford connection V¢ (cf. (2.16) and (2.17)). Let G be a compact Lie group
which acts fiberwisely on W, i.e., for any g € G, m o g = w. We assume that the action
of G preserves the horizontal bundle 7% W and the orientation of 7Y and could be lifted
on & such that it is compatible with the Clifford action and the Z;-grading. We assume that
g"", h®, V€ are G-invariant. For any ¢ € G, the equivariant Bismut—Cheeger eta form
ng(F, A) € Q*(B, C)/Imd is defined in Definition 2.4 up to exact forms with respect to the
equivariant geometric family 7 = (W, &, THH w,gT?, h€, V) (cf. Definition 2.1) over B
and a perturbation operator A (cf. Definition 2.3). Remark that if B is a point and dim Y is
odd, then the equivariant eta form here degenerates to the canonical equivariant reduced eta
invariant by taking a special perturbation operator [24, Remark 2.20].

Leti: W — V be an equivariant embedding of smooth G-equivariant oriented manifolds
with even codimension. Letry : V — B be a G-equivariant submersion with compact fibres
X, whose restriction ty : W — B is an equivariant submersion with compact fibres Y. We
assume that G acts on B trivially and the normal bundle Ny,x to Y in X has an equivariant
Spin structure.

Yy —Ww

UV

X—V —B.

Let Fy = (W, &, TH W, g™V h® V&) and Fx = (V,Ex. TRV, gT* nfx, v&x)
be two equivariant geometric families over B such that (T;{V w, gTY) and (Tnlf/ v, gTX )
satisfy the totally geodesic condition (3.11).

We state our main result of this paper as follows.

@ Springer



Real embedding and equivariant eta forms

Theorem 1.1 Assume that Ny,x has an equivariant Spin‘ structure and the equivariant
geometric families Fy and Fx satisfy the fundamental assumption (3.13) and (3.15). Let Ay
and Ax be the perturbation operators with respect to Fy and Fx. Then for any compact
submanifold K of B, there exists Ty > 2, which depends on K, such that for any T > Ty,
modulo exact forms on B, over K, we have

ﬁg(}—XH -AX) = ﬁg(}—Yv -AY) +/
X

+ chy (sf6{D(Fx) + Ax, D(Fx) + TV + A7 y}). (I.1)

AgTX V%) yX(Fy. Fx)
8

Here y;( (Fy, Fx) is the equivariant Bismut—Zhang current defined in Definition 3.3 and
Ar .y is the operator given in Proposition 3.6. The last term in (1.1) is the equivariant Chern
character of the equivariant Dai—Zhang higher spectral flow which explains the mod Z term
in the original Bismut—Zhang embedding formula.

The proof of our main result here is highly related to the analytical localization technique
developed in [7,8,11,12]. Thanks to the functoriality of equivariant eta forms proved in
[24,25], we only need to prove the embedding formula when B is a point and dim X is odd.

Note that in [21,31], the authors give another proof of the Bismut-Zhang embedding
formula without using the analytical localization technique. It is interesting to ask whether
there is another proof of our main result here from that line.

Our paper is organized as follows. In Sect. 2, we summarize the definition and the prop-
erties of equivariant eta forms in [24] using the language of Clifford modules. In Sect. 3, we
state our main result. We also discuss an application on the equivariant Atiyah—Hirzebruch
direct image. In Sect. 4, we prove our main result in two steps. In Sect. 4.1, we prove Theo-
rem 1.1 when the base space B is a point following [13]. In Sect. 4.2, we explain how to use
the functoriality to reduce the proof of Theorem 1.1 to the case considered in Sect. 4.1.

Notation We use the Einstein summation convention in this paper.

We also use the superconnection formalism of Quillen [28] and Bismut—Cheeger [9]. If A
is a Zp-graded algebra, and if a, b € A, then we will note [a, b] as the supercommutator of
a, b. If B is another Z,-graded algebra, we will note AQ B as the Z,-graded tensor product.

For a fibre bundle 7 : V — B, we will often use the integration of the differential forms
along the oriented fibres X in this paper. Since the fibres may be odd dimensional, we must
make precise our sign conventions: for @ € Q*(B) and 8 € Q*(V), then

f(rr*oz)/\ﬁ:ot/\/ B. (1.2)
X X

2 Equivariant eta forms

In this section, we summarize the definition and the properties of equivariant eta forms in
[24,25] using the language of Clifford modules. Note that locally all manifolds are spin. The
proofs of them are the same as in the spin case. In Sect. 2.1, we recall elementary results
on Clifford algebras. In Sect. 2.2, we describe the geometry of the fibration and recall the
Bismut superconnection. In Sect. 2.3, we define the equivariant eta form and state the anomaly
formula. In Sect. 2.4, we explain the functoriality of the equivariant eta forms.
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2.1 Clifford algebras

Let E be an oriented Euclidean vector space, such that dim £ = n, with orthonormal basis
{ei}1<i<n. Let C(E) be the complex Clifford algebra of E defined by the relations

eiej t+eje; = —25,‘j. 2.0

Sometimes, we also denote by c(e) the element of C(E) corresponding to e € E. Let Spin,
be the Spin® group associated with C(E) (see [23, Appendix D]).

If e € E, let e* € E* correspond to e by the scalar product of E. The exterior algebra
A(E*) ®r C is a module of C(E) defined by

cle)a =e* Na — .o (2.2)

for any « € A(E*) ®gr C. The map a — c(a) - 1, a € C(E), induces an isomorphism of
vector spaces

o:C(E) = A(E™) ®gr C. (2.3)

If n is even, up to isomorphism, C (E) has a unique irreducible module, the spinor S(E),
which is Zj-graded. We denote by S(E) = S4+(E) @ S—(E). Moreover, there are isomor-
phisms of Z,-graded algebras

C(E) ~ End(S(E)) ~ S(E)QRS(E)*. (2.4)

Note that S(E) is a representation of Spin{, induced by the Clifford action.
If n is odd, C(E) has two (inequivalent) irreducible modules. However, their restriction
to Spin{, are equivalent irreducible representations, which we denote by S(E). We have

C(E) ~ End(S(E)) @ End(S(E)). (2.5)
Let F be another oriented Euclidean vector space. Then
C(E® F) ~ C(E)®C(F). (2.6)

Let us introduce the convention for the tensor product of Clifford modules which will be
used in the whole paper. Let X and ) be two representations of C(E) and C(F). If both
dim E and dim F are odd, put

QY =X®)Y®C% 2.7)

By [9, (1.10)], XQYis a Zp-representation of C(E)QC(F). If dim E is odd, if dim F is
even, and if ) is Z,-graded, then put

ARY=XQ). 2.8)

By [9, (1.11)], XQYisa representation of C(E)®C(F). If both dim E and dim F are even
and if both X', ) are Z;-graded, we define X ®Y as (2.8) with the same action defined in [9,
(1.11)]. Then X®Y is a Z,-representation of C(E)®C(F).

With the above convention, we have the isomorphism of Clifford modules

S(E® F) ~ S(E)®S(F). (2.9)
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Real embedding and equivariant eta forms

2.2 Bismut superconnection

Let7: W — B be a smooth submersion of smooth oriented manifolds with compact fibres
Y. We assume that B is connected. Remark that W here is not assumed to be connected. To
simplify the notations, we usually denote the connected component by W when there is no
confusion.

Let TY = T W/B be the relative tangent bundle to the fibres Y. Then 7Y is orientable.
Let T,/ W be a horizontal subbundle of TW such that

TW=THWaoTY. (2.10)
The splitting (2.10) gives an identification
THW = 7*TB. (2.11)

If there is no ambiguity, we will omit the subscript 7 in TﬂH w.
Let g7, g78 be Riemannian metrics on TY, TB. We equip TW = THW @ TY with
the Riemannian metric

TV =t gTB @ gTY. 2.12)

Let VIW VT8 pe the Levi-Civita connections of (W, gTW), (B, gTB). Let PTY be the
projection PTY : TW =THW @ TY — TY. Set

vIY = pTYyTW pTY, (2.13)

Then V'Y is a Euclidean connection on T'Y.
Let VT B.TY pe the connectionon TW = THW @ TY defined by

VIBTY — prygTB g g1V (2.14)

Then VT B.TY preserves the metric g7V in (2.12).
Set

§=vIW _yTBTY (2.15)

Then S is a 1-form on W with values in antisymmetric elements of End(7 W). By [6, Theo-
rem 1.9], we know that V7Y and the (3, 0)-tensor g7V (S(-)-, -) only depend on (THW, gTY).

Let C(TY) be the Clifford algebra bundle of (7Y, gTY ), whose fibre at x € W is the
Clifford algebra C (T, Y) of the Euclidean vector space (7, Y, gTX Yy AZs>- graded self-adjoint
C(TY)-module,

E=E,DE_, (2.16)

is a Z,-graded vector bundle equipped with a Hermitian metric 2% preserving the splitting
(2.16) and a fiberwise Clifford multiplication ¢ of C(T'Y) such that the action c restricted to
TY is skew-adjoint on (£, h€) and anticommutes (resp. commutes) with the Z,-grading if
the dimension of the fibres is even (resp. odd). Let 7€ be the Z,-grading of £ which is +1
on &4.

Let V€ be a Clifford connection on & associated with V7Y | that is, V& preserves h and
the splitting (2.16) and forany U € TW, Z € €°(W,TY),

VG, (D)) = (VY 7). (2.17)
Let {W,} be the connected components of W. Then 7 |w, : W, — B is a smooth submer-

sion with compact fibres Y.
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For a locally oriented orthonormal basis eq, ..., eqimy, of TY,, we define the chirality
operator on &£|w, by

_ (V=D4mYe/2¢(e1) - - c(edimy,), if dim Y, iseven;

«= : ey, , if dim ¥, is odd. (2.18)

Note that our definition here is different from [5, Lemma 3.17] when dim Y,, is odd. Then
I'y does not depend on the choice of the basis and is globally defined. We note that Fé =1
and [t€, y] = 0. Set

t8/5 =% .1, (2.19)

Then (z5/%)? = 1.
Locally, we could write

Elw, = So(TYy)RE, (2.20)

where So(7'Yy) is the spinor bundle for the (possibly non-existent) spin structure of 7Y,
and & = &, @ &_ is a Z,-graded vector bundle. Then 'y, ‘L'(f /s
Z,-gradings of So(T'Y,), & and So(TY,)RE.

Let G be acompact Lie group which acts on W and B such thatforany g € G,mog = gom.
We assume that the action of G preserves the splitting (2.10) and the orientation of 7Y and
could be lifted on £ such that it is compatible with the Clifford action and preserves the
splitting (2.16). We assume that g7, h€, V€ are G-invariant.

and t€ correspond to the

Definition 2.1 (Compare with [15, Definition 2.2], [24, Definition 1.1]) An equivariant geo-
metric family F over B is a family of G-equivariant geometric data

F=W.ETHW, g™Y né v¥) (2.21)
described as above. We call the equivariant geometric family F is even (resp. odd) if for any
connected component of fibres, the dimension of it is even (resp. odd).

Let D(F) be the fiberwise Dirac operator
D(F) = c(e))VE (2.22)

associated with the equivariant geometric family . Then the G-action commutes with D (F).
For b € B, let &), be the set of smooth sections over Y} of . As in [6], we will regard &
as an infinite dimensional fibre bundle over B.If V € T B, let VH e TH W be its horizontal
lift in 7# W so that 7, V¥ = V. Forany V € TB,s € $°(B, &) = (W, &), the
connection
- 1
Vit = Vius = S{Stene. Vi) (2.23)
preserves the L2-product on & (see e.g., [10, Proposition 1.4]). Let { fp) be alocal frame
of TB and {f”} be its dual. We denote by Véu = fP A V}’Z‘”. We denote by ¢(TH) =
—% c(PTY[fIf{, FENFP A FIA. By [6, (3.18)], the rescaled Bismut superconnection BB, :
(B, A(T*B)®E) — €°(B, A(T*B)®&) is defined by
1
4/u

Obviously, the Bismut superconnection B, commutes with the G-action. Furthermore, Bﬁ
is a 2-order elliptic differential operator along the fibres Y. Let exp(—IBSﬁ) be the family of

By = VJuD(F) + V&t — (T, (2.24)
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heat operators associated with the fiberwise elliptic operator B2. Then exp(—B2) is a smooth
family of smoothing operators (see e.g., [5, Theorem 9.51]).
Let P be a section of A(T*B)® End(&). Set

Tr,[P] := Tr[t€ P] € A(T*B). (2.25)

Here the trace operator on the right hand side of (2.25) only acts on £. We use the convention
that if o € A(T*B),

Trg[wP] = w Trg[ P]. (2.26)
It is compatible with the sign convention (1.2). We denote by Tr?dd/ e[ P the part of Trg[P]
which takes values in odd or even forms. Set

Trg[P], if dimY is even;

Tro4[P], if dim Y is odd. (2.27)

Tr[P] = {

2.3 Equivariant eta forms

In this subsection, we state the definition and the anomaly formula of equivariant eta forms
in the language of Clifford modules.

In the rest of the paper, we assume that G acts trivially on B.

Take g € G and set W8 = {x € W : gx = x}. Then W¥ is a submanifold of W and
wlwe : W& — B is a fibre bundle with compact fibres Y8. Let Nys,w denote the normal
bundle of W& in W, then Nys,w = TW/TWE& =TY /TY$. We also denote it by Nys y.

The differential of g gives a bundle isometry dg : Nys;y — Nysy. Since g lies in a
compact abelian Lie group, we know that there is an orthonormal decomposition of smooth
vector bundles over W&

TY|we =TY*® Nyeyy =TYS® P N(O). (2.28)
0<O<m
where dg|nx) = —Id and foreach 0,0 < 6 < m, N(0) is acomplex vector bundle on which

dg acts by multiplication by ¢’?. Since g preserves the metric and the orientation of T'Y,
det(dg|n(x)) = 1. Thus dim N (7r) is even. So the normal bundle Nys y is even dimensional.

Observe that if N(z) = 0 or if TY has a G-equivariant Spin® structure, then 7Y¢ is
canonically oriented (cf. [5, Proposition 6.14], [25, Proposition 2.1]). In general, T Y# is not
necessary orientable. In this paper we assume that 7Y¥ is orientable and fix an orientation
of TY#. In this case Nys y is canonically oriented.

Let E be an equivariant real Euclidean vector bundle over W. We could get the decom-
position of real vector bundles over W& in the same way as (2.28),

E|lwe = @ E(0). (2.29)

0<O<m

Here we also denote E(0) by ES.

Let V be an equivariant Euclidean connection on E. Then it preserves the decomposition
(2.29). Let VE® and VE® be the corresponding induced connections on E¢ and E(6), and
let RE and RE® be the corresponding curvatures.
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Set
- . , YL RE*
A(E, VE) = detr | — I =
sinh (@RE’Z)
-1
Lai J=1
1_[ «/—lzdlmRE(mdet% 1—gexp | =——RE® . (2.30)
0<6<m 2

Let Endc(ry)(€) be the set of endomorphisms of £ supercommuting with the Clifford
action. Then it is a vector bundle over W. Let Endc(ry)(€)x be the fiber at x € W. For any
a € Endc(ry)(€)x and x € W, we define the relative trace Tré/S Endc(ry)(€)x — Cby
(cf. [5, Definition 3.28])

—dim Y, /2 e : .
Trg/s[a] _ {2 Try[[Tgal, if dimY, iseven; 2.31)

2-WimYe—D/2 Ty [4], if dim Y, is odd.

The relative trace could be naturally extended on (W, 7*A(T*B) ® Endc(ry)(€)) as in
(2.26).
Let R¢ be the curvature of V<. Let

1
RE/S = R® = L(RVej, ej)eei)e(e))
€ € (W, n*A(T*B) ® Endc(ry)(£)) (2.32)

be the twisting curvature of the C(T'Y)-module £ as in [5, Proposition 3.43].

By [5, Lemma 6.10], along W$, the action of g € G on £ may be identified with
a section gs of C(Nys;y) ®c Endc(ry)(€). Let dim Nys;y = £;. Under the isomor-
phism (2.3), 0 (g%) € €® (W&, AN;ﬁg/Y ®r Endc(ry)(£)). Since we assume that Nys,y
is oriented, paring with the volume form, we could get the highest degree coefficient
o1, (g5) € € (W, Endc(ry) (6)) of o (8°).

Then we could define the localized relative Chern character chg (£/S, VE) e Q* (W8, C)
in the same way as [5, Definition 6.13] by

251/2 Rg/5|wg
ch, (£/S,VE) == Tef/S |:U[ (g%) exp (—7)] (2.33)
¢ det'/2(1 — glnye ) : 2my/—1

Note that if 7Y has an equivariant spin structure, the localized relative Chern character here
is just the usual equivariant Chern character.

Recall that if B is compact, the equivariant K-group K 8(3) is the Grothendieck group
of the equivalent classes of the equivariant vector bundles over B. Lett: B — B x S! be a
G-equivariant inclusion map. It is well known that if the G-action on S is trivial,

K§(B) ~ker (" : KG(B x S') — K&(B)). (2.34)

Forx € K g (B), g € G, the classical equivariant Chern character map sends x to chg(x) €
H®*" (B, C). By (2.34), for x € KIG (B), we can regard x as an element x’ in K(O; (B x SH.
The odd equivariant Chern character map

chy: K5 (B) — H*Y(B,C) (2.35)
is defined by (cf. e.g., [25, (2.52)])

chg (x) :=/ chy (x'). (2.36)
sl
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We adopt the sign convention as in (1.2).

Furthermore, the classical construction of Atiyah—Singer [3,4] assigns to each even (resp.
odd) equivariant geometric family F its equivariant (analytic) index ind(D(F)) € K g (B)
(resp. K(l; (B)).

For o € Q2/(B), set

(2mv/—1 )7% a, if j is even;

Vp(e) = = 2.37)
L (2nv0) T o, if jisodd.

The following family local index theorem is a well-known result (see e.g., [25, Theo-
rem 2.2]).

Theorem2.2 For any u > 0 and g € G, the differential form WB"Fr[g exp(—Bﬁ)] €
Q*(B, C) is closed and its cohomology class is independent of u > 0. Asu — 0,

lirrbwgﬁ[gexp(—]Bi)]:/ A TY, V) chy(£/S, V). (2.38)
u— Y8

If B is compact, the closed form wgfr[g exp(—IB%%)] represents the class chg (ind(D(F))).

Definition 2.3 [24, Definition 2.10] A perturbation operator with respect to D(F), denoted by
A, is defined to be a smooth family of G-equivariant bounded self-adjoint pseudodifferential
operators on £ along the fibres such that it commutes (resp. anti-commutes) with the Z;-
grading of £ when the fibres are odd (resp. even) dimensional, and D(F) + A is invertible.

Remark that from [24, Proposition 2.3], if B is compact and at least one component of
the fibres has the non-zero dimension, then there exists a perturbation operator with respect
to D(F) if and only if ind(D(F)) = 0 € K{(B).

In the followings, we always assume that there exists a perturbation operator with respect
to D(F) on F.

For o € A(T*(R x B)), we can expand « in the form

oa=dunayg+ay, apar € A(T*B). (2.39)
Set
(] := ayp. (2.40)

Let x € 4;°(R) be a cut-off function such that

0, ifu<I;

x(u) = { 1 ifus2 (2.41)

Let A be a perturbation operator with respect to D(F). Then A could be extended to 1®.4
on €® (B, 7*A(T*B)®E) as an element of the Z-graded tensor product of Z,-graded
algebras. In this case, we have

@®D(18A) = (- D E* 1R A) (@BD). (2.42)
We usually abbreviate 1&.4 by A when there is no confusion. Set

B, =B, + Vux(Vu)A. (2.43)
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Definition 2.4 [24, Definition 2.11] For any g € G, modulo exact forms on B, the equivariant
Bismut—Cheeger eta form with perturbation operator A is defined by

00 2 du
ng(F, A) :=—/ :wag’fr[gexp<— <B;+duA%> )i“ du
0

€ Q*(B,C)/Imd. (2.44)

Remark that by our convention in Sect. 2.1, du anti-commutes with A and c(v) for any
veTY.

From the discussion in [24, Section 2.3], the equivariant eta form with perturbation in
Definition 2.4 is well defined and does not depend on the cut-off function. Moreover, since
we assume that Y8 is oriented, we have (cf. [24, (2.44)])

dBiig(F, A) = /

A (TY, V) chy(£/S, V). (2.45)
Y&

Remark 2.5 After changing the variable, we have

00 2 du
f]g(f,.A)=—/ {wkxg'ﬁ |:gexp (— (IBS/MZ +du/\%> )i“ du. (2.46)
0

We will often use this formula as the definition of the equivariant eta form.

Explicitly,
* 1 even BB;Z I N2
) ﬁl/fB Tr, 8 ou exp(—(B,2)7) | du
_ € Q¥ (B, C)/Imd, if F is odd,;
ng(F, A) = , (2.47)

/ T T Pz (—B )% |d
A zﬁﬁw s | g —= exp(—(B), u

€ QU(B, C)/Imd, if F is even.

From [24, Remark 2.20], when B is a point, dim Y is odd, letting A = Pier p(Fy) be the
orthogonal projection onto the kernel of D(Fy), the equivariant eta form 7, (F, A) is just
the equivariant reduced eta invariant defined in [20]. Note that from (2.47), if B is a point
and dim Y is even, we have 7, (F, .A) = 0 for any perturbation operator A.

Let F = (W, &, THW, g™ h€ V&) and F/ = (W, &, T HW, TV '€, V') be two
equivariant geometric families over B. Let

(ig .C“flg> VT VT VE VE) e Qf(WE, C)/Imd
be the Chern—Simons class (cf. [27, Appendix B]) such that
d (ﬁg : Eflg) VTV VY vE v'E)
= A (TY,V'TY) cho(£/8,V'E) = A (TY, V) chy(£/5,VE).  (2.48)

When B is compact, let sfg {(D(F)+A', P'), (D(F)+.A, P)} € K},(B), which we often
simply denote by sfG{D(F') +.A", D(F) + A}, be the equivariant Dai-Zhang higher spectral
flow defined in [24, Definition 2.5, 2.6], where P, P’ are the orthonormal projections onto
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the eigenspaces of positive eigenvalues with respect to D(F) + A, D(F') + A’ respectively.
If B is a point and dim Y is odd, it is just the canonical equivariant spectral flow.
The following anomaly formula is proved in [24, Theorem 2.17] and [25, Theorem 2.7].

Theorem 2.6 Let A, A’ be perturbation operators with respect to D(F), D(F') respectively.
For any g € G, modulo exact forms on B, we have

(a) if B is compact, then

~

g (F', A — iig(F, A) = / (Kg .CNhg) (VTY7 vTY vE V/E)
Y8
+ chy (sfG{D(F) + A', D(F) + A}); (2.49)

(b) if B is noncompact and there exists a smooth path (Fs, As), s € [0, 1], connecting
(F, A) and (F', A) such that for any s € [0, 1], Ay is the perturbation operator of
D(Fy), then

ﬁg(f’,A’)—ﬁg(f,A)=/ (ig-c’hg) (v”,v/”,vg,vf). (2.50)

Y8
2.4 Functoriality

Letmy : U — W be a G-equivariant submersion of smooth manifolds with compact oriented
fibres M. Let (Epr, h€M ) be a Z-graded self-adjoint equivariant C (7 M)-module. Let

Fu=WU.Em. TR U, g™ nom von) (2.51)

be a G-equivariant geometric family over W.Thennz := womy : U — Bisa G-equivariant
submersion with compact oriented fibres Z, whose orientation is induced by the orientations
of Y and M. Then we have the diagram of submersions:

M—Z—U

IR

Y—W-—78B.

Set T;}‘L Z = THIL U NTZ. Then we have the splitting of smooth vector bundles over U,
TZ=TlZaTM, (2.52)

and
THZ=nyTy. (2.53)

Take the geometric data (Tﬂg U, g; z ) of w7z such that Tﬂg U C T,gd U,

1
gt =nye'l @ ﬁgTM (2.54)
and g7% = gT'%. We denote the Clifford algebra bundle with respect to g7.# by C7 (T Z) and
the corresponding 1-form in (2.15) by St.
Let {e;}, { fp} be local orthonormal frames of T M, T'Y with respect to gT™ oTY respec-
tively. Now {Te;} is a local orthonormal frame of 7 M with respect to the rescaled metric

T
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T72gT™ Let f f be the horizontal lift of f}, with respect to (2.52). Now we define a Clifford
algebra homomorphism

Gr: (Cr(TZ).g17) — (C(TZ).g"%) (2.55)
by Gr(cr (fi1)) = c(f) and Gr(cr(Te)) = c(e;). Under this homomorphism,
Ez =1} Ey®En (2.56)

with induced Hermitian metric h€7 is a Z,-graded self-adjoint equivariant C7 (T Z)-module.
Let

Ve .= g} VET @ 1 + 1@ VoM, (2.57)
Then it is a Clifford connection on £z associated with
VILIM . — vV @141 VM, (2.58)

Now, we denote the Levi-Civita connection on 7 Z with respect to g; Z by V; Z. Then we
could calculate that

1
viz .= Oyéz 4 5(SrTe;. fhrer(Tene(fih

1
+ 3 St fDre(fhefh (2.59)

is a Clifford connection associated with V;Z, where (-, )7 = g;z(-, -) (cf. [25, (4.3)]). Thus
we get a rescaled equivariant geometric family

Fzr = (U, €. TRU, gl% n¥2,v57) (2.60)

over B. We write 7z = Fz 1.

Let Ay be a perturbation operator with respect to D(Fy). Then Ay could be extended
t0 1®Apy on €U, 5 A(T*B)®7},Ey®Em).

In [24, Lemma 2.15], we prove that for any compact submanifold K of B, there exists
Ty > 0 such that for T > Tp, I1®T Ay is a perturbation operator with respect to D(Fz, 1)
over K.

The following theorem is the Clifford module version of [24, Lemma 2.16], which is
related to [17, Theorem 0.1], [26, Theorem 3.1], [14, Theorem 5.11] and [25, Theorem 3.4].

Theorem 2.7 For any compact submanifold K of B, there exists Ty > 0 such that for T > Ty,
modulo exact forms on B, over K, we have

o (Frr 18T Ay) = / Re(TY. V) chy(Ey /S, VEV) o (Far. Au)
Ys

—/ (Ag - che) (VF2 97TV Vi OVEL) 261
78

3 Embedding of equivariant eta forms

In this section, we state our main result and give an application in equivariant Atiyah—
Hirzebruch direct image. In Sect. 3.1, we describe the geometry of the embedding of
submersions. In Sect. 3.2, we explain our assumptions on the embedding of the geomet-
ric families. In Sect. 3.3, we introduce the equivariant Atiyah—Hirzebruch direct image. In
Sect. 3.4, we state our main result.
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3.1 Embedding of submersions

In this subsection, we introduce the embedding of submersions following [8, Section 1] and
[12].

Leti: W — V be an embedding of smooth oriented manifolds. Letzy : V — B be a sub-
mersion of smooth oriented manifolds with compact fibres X, whose restrictiontry : W — B
is a smooth submersion with compact fibres Y.

Thus, we have the diagram of maps

Y—Ww

U

X—V —B.

In general, B, V, W are not connected. We simply assume that B and V' are connected. For
any connected component W, of W, we assume that dim V — dim W, is even. To simplify
the notations, we usually denote the connected component by W when there is no confusion.

LetTX =TV /B, TY = TW/B be the relative tangent bundles to the fibres X, Y. Let
THV be a smooth subbundle of TV such that

TV =TV oTX. 3.1

Let Ny v be the norrgal bundle to W in V, let Ny, x be the normal bundle to ¥ in X. Clearly
Nw v = Ny,x.Let Ny,x be a smooth subbundle of 7 X |w such that

TX|w =TY ® Ny/x. (3.2)
Clearly,
THV ~73TB, Ny/x ~ Ny/x. (3.3)
By (3.1) and (3.2), we get
TVIiw=THV|y @ TY ® Ny/x. (3.4)

By (3.4), there is a well-defined morphism

W ~

— Ty N 35
v lw @ Ny,x (3.5)
and this morphism maps 7 W /TY into a subbundle of TW. Let T W be the subbundle of
T W which is the image of TW /TY by the morphism (3.5). Clearly,

TW=TlwearTyY. (3.6)

Note that TH W depends on the choice of N y/x - In general, the subbundle THW is not equal
to THV|y.

Let g7V be a metric on TV. Let g7 be the induced metric on TW. Let g7%, gT7 be
the induced metrics on T X, T'Y. Note that even if g7 is of the type as in (2.12), in general,
g7V is not of this type.

We identity Ny,x with the orthogonal bundle N y/x to TY in T X|w with respect to

gTX|W. Let gNY/X be the induced metric on Ny,x. On W, we have

TX|\lw=TY & Ny/x. 3.7
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To the pairs (Tn’é V,g"Xyand (Tjgv W, gT¥), we can associate the objects that we construct
in (2.13) and (2.15). In particular, 7 X, TY are now equipped with connections V7, vTY
which preserve the metrics g7 X, g7" respectively.

Let PTY, PNv/x be the orthogonal projections TX|w — TY, TX|y — Ny,x. By [8,

Theorem 1.9], we have
vIY = pTYyTXly, (3.8)
Let
vVrix = pNrixyTX 3.9)
be the connection on Ny, x. Then vNy/x preserves the metric gN Y/X | Put
vIVNryx — yTY g yhvx, (3.10)

Then VTY-Nv/x is a Euclidean connection on TX|w = TY & Nyx.

Let G be a compact Lie group. We assume that W, V and B are G-manifolds and the
G-action commutes with the embedding and 7y . Obviously, the group action commutes with
mw. We assume that G acts trivially on B. We assume that the group action preserves the
splittings (3.1) and (3.6) and all metrics and connections are G-invariant.

Let W8, V& be the fixed point sets of W, V for g € G. Then nw|ws: W& — B and
wy|vs: V8 — B are submersions with compact fibres Y4 and X8. We assume that 7Y#$ and
T X8 are all oriented as the beginning of Sect. 2.3.

Remark 3.1 (cf. [8, Section 7.5]) Given a G-equivariant pair (THHW W, gTY), we could take
metrics g7 % and g”" on TB and TW such that g"" = 7% ¢"% @ g"". Let g" be a G-
invariant metric on Ny, x. Let V¥ be a G-invariant Euclidean connection on (Ny /X gN ) and
THN be the horizontal subbundle associated with the fibration 7y : Ny /x — W and vV,
We take g7V = n;\k,gTW ® gV for TN = THN @ N. Since W intersects X orthogonally,
we could take a horizontal subbundle 7,7V over V such that T V|y = T W. Using
the partition of unity argument, we could construct G-invariant metrics g7%, g7 on T X,
TV such that g7V = 7}, g7 & g7* and W is a totally geodesic submanifold of V. In this

case, for any b € B, the fibre Y} is a totally geodesic submanifold of X;. It means that
vTXlw — yTY.Ny/x_

By Remark 3.1, in this paper, we will always assume that the pairs (7,7 W, g”") and
(Tnlf/ v, gTX) satisfy the conditions that

THVIw =T w, v =yT"Nrx, (3.11)

3.2 Embedding of the geometric families

In this subsection, we state our assumptions on the embedding of the geometric families,
which is the equivariant family case of the assumptions in [13, Section 1 b)].

Let Fy := (W, &, TH W, gV, h® V&) and Fx := (V,Ex, TRV, g"*, nfx, v&x)
be two equivariant geometric families over B such that the pairs (Tnlzv W, g™y and

(Tnlf/ V, gTX) satisfy (3.11). For simplicity, we assume that for any connected component

Wy, T(fY/S =1on&y.

Assume that (Nyx, gN¥/X) has an equivariant Spin© structure. Then there exists an equiv-
ariant complex line bundle Ly (cf. [23, Appendix D]) such that w,(Ny,x) = c¢1(Ly) mod 2,
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where w; is the second Stiefel-Whitney class and ¢ is the first Chern class. Let S(Ny,x, Ln)
be the spinor bundle for Ly which locally may be written as

S(Nysx, Ln) = So(Ny;x) ® L;V/Z, (3.12)

where Sp(Ny/x) is the spinor bundle for the (possibly non-existent) spin structure on Ny, x

and L;\,/Z is the (possibly non-existent) square root of L. Then the G-actions on Ny,x and
Ly lift to S(Ny,x, Ly). For simplicity, we usually simply denote the spinor bundle by Sy .

Let 1L be a G-invariant Hermitian metric on Ly. Let VX be a G-invariant Hermitian
connection on (Ly, h%). Let A5V be the equivariant Hermitian metric on Sy induced by
g™/x and h™. Let VSN be the equivariant Hermitian connection on Sy induced by VVv/x
and V£,

From (2.19), the bundle Endc(7x)(Ex) is naturally Z,-graded with respect to T8x/S Let
V be a smooth self-adjoint section of Endc (7 x)(€x) such that it exchanges this Z,-grading
and commutes with the G-action. Then V acts on 71‘*,A(T*B)<§>E x in the same way as the
perturbation operator .4 in (2.42).

We assume that on VAW,V is invertible, and that on W ,ker V has locally constant nonzero
dimension, so that ker V is a nonzero smooth Z;-graded G-equivariant vector subbundle of
Ex|w. Let h¥™V be the metric on ker V induced by the metric hExIw Let PKrV pe the
orthogonal projection operator from Ex |w onto ker V.

Fory e W, U € T, X, let 9y V(y) be the derivative of V with respect to U in any given
smooth trivialization of £x near y € W. One then verifies that PX"Va;V(y) PXrY does
not depend on the trivialization, and only depends on the image Z of U € TyX in Ny/,x.
From now on, we will write 9 (V)(y) instead of PV 3,1 (y) PX"V Then one verifies that
oz (V) () is a self-adjoint element of End(ker V) and exchanges the Z;-grading.

If Z € Ny/x, let ¢(Z) € End(Sy) be the transpose of ¢(Z) acting on Sy.

Denote by N = Ny /x ®R C. Since Ly ® L7, is an equivariant trivial bundle and since
dim Ny,x is even, we have A(N) ~ Sy®S}. We equip A(NE)®Ey with the induced
metric hANO®EY For 7 ¢ Ny/x, ¢(Z) acts on SN®$1’§,<§>EY likel®c(Z)® 1.
Fundamental assumption Letty : Ny,x — W be the projection. Over the total space Ny, x,
we have the equivariant identification

(zj ker V, T iV 9,(0) ()

~ (R (ANHBE), mih MNP J=T2(2)). (3.13)

Let VXY be the equivariant Hermitian connection on ker V,
Vkerv — PkeTVv€x|W Pkerv. (314)

We make the assumption that under the identification (3.13),
Vkerv — VA(N(*:)@SY. (315)

3.3 Atiyah-Hirzebruch direct image

In this subsection, we introduce an important example of the embedding of equivariant
geometric families satisfying the fundamental assumption: the equivariant version of the

Atiyah—Hirzebruch direct image [1,21]. We assume that the base space B is compact and
adopt the notations and the assumptions in Sect. 3.1 in this subsection.
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We further assume that 7Y and T X have equivariant Spin¢ structures. Then there exist
equivariant complex line bundles Ly and Ly over W and V such that wo(TY) = c¢i(Ly)
mod 2 and w2 (T X) = c¢1(Lx) mod 2. Then from the splitting (3.7), the equivariant vec-
tor bundle Ny,x over W has an equivariant Spin® structure with associated equivariant
line bundle Ly := Lx ® L;l. Let hLv, hlx be G-invariant Hermitian metrics on Ly,
Ly and VLv, VLx be G-invariant Hermitian connections on (Ly, hLY), (Lx, hLx). Let
hEN and VEV be metric and connection on Ly induced by hty plx and VIv vIx Let
S(TY, Ly), S(TX, Lx) and S(Ny,x, Ln) be the spinor bundles for (TY, Ly), (T X, Lx)
and (Ny,x, Ly), which we will simply denote by Sy, Sx and Sy. Then these spinors
are G-equivariant vector bundles. Furthermore, Sx|w = Sy ®Sy. Since dim Ny /X =
dim V — dim W is even, the spinor Sy is Z;-graded.

Recall that {Wy}e=1,. x are the connected components of W. Let (u, h*) be a G-
equivariant Hermitian vector bundle over W with a G-invariant Hermitian connection V#.
In the followings, we will describe a geometric realization of the Atiyah—Hirzebruch direct
image i![u] € Eg(V) as in [1,21]. We denote by (i, the restriction of © on W,,.

Foranyr > 0,set Ny, := {Z € Ny,,x : |Z| < r}. Thenthereis gy > 0 such that the map
(v, Z) € Ny, )x — exp;/ (Z) defines a diffeomorphism of Ny 2¢, on an open G-equivariant
tubular neighbourhood of W,, in V for any . Without confusion we will also regard Ny 2¢, as
the open G-equivariant tubular neighbourhood of W in V. We choose g9 > 0 small enough
such that forany 1 < o # B8 < k, Ny269 N Ng2gy = 9.

Let 7y : Ny,;x — W, denote the projection of the normal bundle Ny, ,x on W,. For
Z € Ny, x,leté(Z) End(S;(,a) be the transpose of ¢(Z) acting on Sy, . Let 7} (S;:,a) be the
pull back bundle OfS;,a over Ny, x.Forany Z € Ny, /x withZ # 0,¢(Z): ﬂ:(SX,miﬂZ —
wy (S}’(,m;)l 7 is an equivariant isomorphism at Z.

From the equivariant Serre-Swan theorem [29, Proposition 2.4], there exists a G-
equivariant Hermitian vector bundle (E, hEe)suchthat S*  Quo®Eyisa G-equivariant
trivial complex vector bundle over W,,. Then .

H2) @ i ldE, : 1l (Sh, 4 ® la ® Eq) — 13 (Sh, _ ® 1o ® Eq) (3.16)

induces a G-equivariant isomorphism between two equivariant trivial vector bundles over
N, «,2¢0 \Wa .

By adding the equivariant trivial bundles, we could assume that for any 1 < o #*
B <k, dim(Sj(,mi ® o ® Ey) = dim(S;‘,ﬁ’i ® npg @ Eg). Clearly, {nj(Sj(,mi ® te P
Els Nay260 }a=1,....k extend smoothly to two equivariant trivial complex vector bundles over
VA Ui<a<k Na,26p-

In summary, what we get is a Z,-graded Hermitian vector bundle (&, 4%) such that

E:E|Na.go = 775(31’(/“,1 ® ta © Ea)|Na,;,0a

. 3.17
BNy y = 7o (he2®He @ pE) G-17

’

Nu,so

"
where h%Ve.+®Ha s the equivariant Hermitian metric on Sy, , ® ji induced by gNe, hlva
2]

and h*e. Let VEe be a G-invariant Hermitian connection on (Eg, hZ*). We can also geta
G-invariant Z,-graded Hermitian connection VE = Vi@ Vi-ong = &4 @ &_ over V such
that

V¥ |y = 7o (Vs @ VE), (3.18)
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where VSNe @1 g the equivariant Hermitian connection on S,’{,m 4 ® g induced by Ve,
VINe and VHe,

It is easy to see that there exists an equivariant self-adjoint automorphism V' of Sx®%,
which exchanges the Z,-grading of &, such that

Vi, = lds, ® («/—1 AL n*IdEa) . (3.19)
From the construction above, we could see that V is invertible on V\W and
(ker V)|w = Sx|lw®S;; ® n = Sy®Sy®S; ® u = Sy®ANH ® . (3.20)

is an equivariant vector bundle over W. Let PXe'V be the orthogonal projection from Sx & |w
onto ker V and VXY — pkerVySx®élw pkerV Erom (3.11), we have

ykerV _ vSy®A(NC)®M 3.21)

Here [£1] — [6-] € K G(V) is an equivariant version of the Atiyah—Hirzebruch direct
image i![p] in [1]. In this construction, let &y = Sy ® p and Ex + = SX®5i Then it
satisfies all assumptions in Sect. 3.2.

3.4 Mainresult

In this subsection, we state our main result.
Let Fy and Fx be the equivariant geometric families satisfying the assumptions in
Sect. 3.2.
For T > 0, let VEx-T be the superconnection on x given by
veel — v& 4 JTV. (3.22)
Let REX/S be the twisting curvature of VEx-T a5in (2.32). Let dim(Nxs/x) = £2.For T > 0,
by [28] and (2.31), we have the equivariant version of [13, (1.17)]:

d
— Tyex/S [ng(g‘sx) exp (—R?/Slvgﬂ

aT
£x/S exy Ylve  pEx/S
_dTr |:ag (¢ )ﬁ exp (— R IVg):|. (3.23)

Recall that v is defined in (2.37). The proof of the following theorem is the same as those
of [7, Theorem 6.3] and [13, Theorem 1.2].

Theorem 3.2 For any compact set K C V8, there exists C > 0, such that if o € Q*(V8)
has support in K ,

26/2 £x/S
fx (1 g TS [ (6™ exp (= R7 1y ) |
8 — 8INxg/x

= [ o Ry T ey /5. V)
ye

C
= —=lollgiky, (3.24)
«/T 1K)

and

Vlvs £ C
Ex/S £ /S
/ng. ng Tr x/ |:a'£2(g X)Zﬁ eXp <_RTX |Vg) < T3/2 ”w"(ﬁl(K) (325)
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Now we could extend the Bismut—Zhang current in [13, Definition 1.3] to the equivariant
case.

Definition 3.3 The equivariant Bismut-Zhang current ng (Fy, Fx) over V& is defined by
1 26/2
2ymV=1 det'2(1 — glny )

%0 dT
-  TeEx/S [0 (25)V|ye ex (—RSX/S ]— (3.26)
/o Vs (8 lvs exp T IVg) Wi

Ve (Fy. Fx) =

By Theorem 3.2, the current ygx (Fy, Fx) is well-defined.
Let dwe be the current of integration over the submanifold W& in V&. By integrating (3.23)
and using Theorem 3.2, we have the following equivariant extension of [13, Theorem 1.4].

Theorem 3.4 The following equation of currents on V8 holds
dyX(Fy. Fx) = chy(Ex /S, VE¥)
— A, (Ny/x. VNV/X) chy (Ey /S, VE)dyys. (3.27)

Remark 3.5 Similarly as in [13], the wave front set WF(ng ) of the current ygx is included in
N;Vg Ve and ygx (Fy, Fx) is a locally integrable current.

Proposition 3.6 Let Ay be a perturbation operator with respect to D(Fy). Then we could
construct a family of bounded pseudodifferential operator Ar y on Fx, depending continu-
ouslyon T > 1, such that the norm of Ar .y is the same as that of Ay for any T > 1 and for
any compact submanifold K of B, there exists To > 1 depending on K such that TV 4+ Ar y
is the perturbation operator with respect to D(Fx) over K for T > Ty.

Proof Following the arguments in [11, Section 8, 9] and [13, Section 4b)] word by word, we
could construct a smooth family of equivariant linear isometric embeddings

Jrp: L*(Ys, Eyly,) — L*(Xp, Ex|x,) (3.28)

for b € B, as in [8, Definition 9.12].

Let Er, be the image of L2(Yy, Eyly,) in L2(Xp, Ex|x,) by Jrs. Let Ef, be
the orthogonal space to Er ; in Lz(Xb,é‘xIxh). Since Jr p is an isometric embedding,
Jrp: L2(Yp, Erly,) — Er is invertible. We extend the domain of JT_L to L2(X,, Exlx,)
linearly such that it vanishes on EJT- b

Let A7y = {Ar,y b}pep be the family of bounded pseudodifferential operators

Aryp = JrpAypdy )t L2 (Xp, ExIx,) = L*(Xp. Exlx,). (3.29)

Then Ar y is a smooth family of equivariant self-adjoint operators. From the definition of
the perturbation operator Ay, we see that A7 y commutes (resp. anti-commutes) with the
Zp-grading 7€ of £x when the fibres are odd (resp. even) dimensional. Since Jr is isometric,
the L2-norm of Ary is the same as that of Ay.

Since Jr is continuous with respect to T, so is the operator A7 y. We only need to prove
that D(Fx) + TV + A7,y over K is invertible for 7" large enough.

Over a compact submanifold K of B, the same estimates of D(Fx) + TV as [11, Theo-
rem 9.8, 9.10, 9.11] hold. Since D(Fy)+ Ay is invertible, the arguments in [11, Section 9], in
which we replace D(Fy) and D(Fx)+TV by D(Fy)+ Ay and D(Fx)+TV+Ary,imply
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that there exists Tp > 1, depending on K, such that for any T > To, D(Fx) + TV + Ary
is invertible. Moreover, the absolutely value of the spectrum of D(Fx) + TV + Ar y hasa
uniformly positive lower bound for 7 > Tj.

The proof of our proposition is completed. O

Now we state our main result of this paper.

Theorem 3.7 Let Ay and Ayx be the perturbation operators with respect to D(Fy) and
D(Fx) respectively. Let At y be the operator constructed in Proposition 3.6. Then for any
compact submanifold K of B, there exists Ty > 2 depending on K such that forany T > Ty,
modulo exact forms on B, over K, we have

Mg (Fx, Ax) = 7ig(Fy, Ay) + / Ag(TX, V) v (Fv. Fx)
X8
+ che (sfg{D(Fx) + Ax, D(Fx) + TV + At y}). (3.30)

Observe that since we only need to prove (3.30) over a compact submanifold, in the proof
of Theorem 3.7, we may assume that B is compact.

If the base space is a point, and if ¥ and X are odd dimensional spin manifolds, then
there exist equivariant complex vector bundles p and &+ such that &y = Sy ® p and
Ex.+ = Sx®&x. The following corollary is a direct consequence of Theorem 3.7.

Corollary 3.8 There exists x € R(G), the representation ring of G, such that
Ng(X,84) —ng(X,5-) =7,(Y, )
4 / Re(TX, V%) yX (Fy, Fy) + 2500, (331)
Xe

Here x could be written as an equivariant spectral flow, x,(x) is the character of g on x and
T is the equivariant reduced APS eta invariant.

When g = 1, Corollary 3.8 is the modification of the Bismut-Zhang embedding formula
by expressing the mod Z term as a spectral flow. Note that in [19, Theorem 4.1], the authors
give an index interpretation of the mod Z term of the embedding formula when the manifolds
are the boundaries. It is also interesting to look for the equivariant family extension of that
formula.

Corollary 3.9 Let X be an odd-dimensional compact G-equivariant Spin® manifold. For
g € G, let (u, h*) be an equivariant Hermitian vector bundle over X8 with a G-invariant
Hermitian connection V. Then there exist a Z»-graded equivariant Hermitian vector bundle
(&, h%) over X with a G-invariant Hermitian connection V¢ and x € R(G), such that

T (X, E) — g (X, E2) = (XS, 1) + xg (x). (3.32)

Proof Note that X¢ is naturally totally geodesic in X. Take (&, h¥, V&) as the equivariant
Atiyah—Hirzebruch direct image of (u, h*, V#*) as in Sect. 3.3. We only need to notice that
V|x¢ = 0 in this case. It implies that ng (Fxs, Fx) =0. O

Remark 3.10 Note that in [22], the authors establish an index theorem for differential K-
theory. The key analytical tool is the Bismut—Zhang embedding formula of the reduced
eta invariants in [13]. Using Corollary 3.8, the index theorem there could be extended to
the equivariant case whenever the equivariant differential K-theory is well-defined. Using
Theorem 3.7, we can also get the compatibility of the push-forward map in equivariant
differential K-theory along the proper submersion and the embedding under the model of
Bunck-Schick [15,16,24]. We will study these in the subsequent paper.
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4 Proof of main result

In this section, we prove our main result Theorem 3.7. In Sect. 4.1, we prove Theorem 3.7
when the base space is a point using some intermediary results along the lines of [13], the
proofs of which rely on almost identical arguments of [7,13]. In Sect. 4.2, we explain how to
use the functoriality to reduce the proof of Theorem 3.7 to the case considered in Sect. 4.1.

4.1 Embedding of equivariant eta invariants

In this subsection, we will prove our main result when B is a point and dim X is odd. Recall
that in (3.11), we have already assumed that Y is totally geodesic in X.

Theorem 4.1 Assume that B is a point and dim X is odd. Then there exists Ty > 2 such that
forany T > Ty, we have

e (Fx, Ax) = g (Fyr, Ay) + / Ro(TX, V7X) y X (Fy, F)
X8

+ chg(sf6{D(Fx) + Ax, D(Fx) + TV + Ar y}). 4.1
Set
D1 = Vu(D(Fx) + TV + x (Vu)((1 = x(T)Ax + x(T)Ar.v)), (4.2)
where yx is the cut-off function defined in (2.41). Let
ad a
Bpagr=Dgpr+dl A ﬁ—{—du/\ 3 4.3)

Definition 4.2 We define 8, = du/\ﬁg—l—dT/\,BgT to be the part of 7 ~1/2 Tr, [g exp(—Bﬁ2 ]

of degree one with respect to the coordinates (7', u), with functions 8%, 8 gT Ry xRy, —
R.

From (4.3), we have

u 1 0D, 1 2
ﬁg (Ts M) = _ﬁ TrS 8 au’ exp(_DMZ’T) ) (4 4)
T 1 8DM2,T 2 ’
,Bg (T,u) = —ﬁ Trs | g 9T eXp(—Duz,T) .
When 0 < u < 1, x(u) = 0. In this case,
1
By (T, u) = VA [¢(D(Fx) + TV) exp(—u* (D(Fx) + TV)))],
" 4.5)
Be (T, u) = — T [V exp(—u*(D(Fx) + TV))].
From (2.47),
+00
Mg (Fx, Ax) = — /0 Bg (0, u)du. (4.6)
As in [13, Theorem 3.4] (see also [25, Proposition 4.2]), we have
d ad
duA£+dT/\a—T Bg =0. “@.7
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Let Ty be the constant in Proposition 3.6. Take ¢, A, T1,0 < e <1 < A < 00, Ty <
Ty < oo.LetT’ =T 4 1, bethe oriented contourin Ry 7 x Ry ;.

AY
r
A ‘ % r
|
|
v I'3 3 u AI‘]
|
|
e ; >
I Iy I
0 To T T
The contour I" is made of four oriented pieces I'1, .. ., I'4 indicated in the above picture.
For 1 <k <4, set I,? = -/Fk B Then by Stocks’ formula and (4.7),
4 9 9
ZI,?:/ ﬁg:/ dun —+dT A — | B, =0. (4.8)
=1 ou u du oT

For any g € G, set

| 3 ) du
,Bg(u) = ﬁTr |:g exp (— (u(D(]-'y) + x(w)Ay) +du A 5) )i| . 4.9

Then by Definition 2.4,

+00
g (Fy, Ay) = — / By (w)du. (4.10)
0
We now establish some estimates of .

Theorem4.3 (i) Forany u > 0, we have

. _ aY
Tll)moo ,Bg(T, u) = ,Bg (u). 4.11)
(1) For0 < uy < uj fixed, there exists C > 0 such that, for u € [uy,uz], T > 2, we have
BT, w) < C. 4.12)
(iii) We have the following identity:
o0 o0
lim / By (T, u)ydu = / By (w)du. (4.13)
T—+00 Jo 2

Proof 1If P is an operator, let Spec(P) be the spectrum of P. From the proof of Proposition 3.6,
there exist 7o > 1, ¢ > 0, such that for T > Ty,

Spec(D(Fx) + TV +Ary)Nl—c,cl=9. 4.14)
Recall that IE‘% is the image of Jr defined in (3.28). For § € [0, 1], we write D(Fx) +
TV + 8 Ar,y in matrix form with respect to the splitting by E(} @ E(}'J‘,

Ar1+8AT Y AT,2>

4.15
A7 3 AT 4 (4.15)

D(Fx)+TV+5Ary = (
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By [11, Theorem 9.8] and (3.29), as T — +o0, we have

1
Jr N AT 4+ 8 A7 y)Jr = D(Fy) +5A +0<—>. 4.16
r (At 7.¥)JT (Fr) Y i (4.16)
Set
T :={5 €[0,1] : D(Fy) + § Ay is not invertible}. “4.17)

Then 7T is a closed subset of [0, 1].
We firstly assume that 7" is not empty. Fix 8o € 7. There exists C(p) > 0 such that

Spec(D(Fy) + o Ay) N[=2C(d0), 2C (d0)] = {0}. (4.18)

Since the eigenvalues are continuous with respect to §, there exists € > 0 small enough, such
that when § € (69 — ¢, §o + &),

Spec(D(Fy) + 8Ay) N[—C(8o), C(80)] C (—C(80)/4, C(30)/4) 4.19)
and

Spec(D(Fy) +8Ay) N (=00, =C(80)]1 U [C(d0), +-00)
C (=00, =7C(80)/4) U (71C(80) /4, +00). (4.20)

Then following the same process in [11, Section 9] and [13, Section 4 b)] by replacing D (Fy)
and D(Fx) + TV by D(Fy) +8Ay and D(Fx) + TV + §Ar,y, for a > 0 fixed, when T
is large enough, there exists C > 0, such that for any § € (8o — ¢, §o + ¢),

|Trs [§(D(Fx) + TV + 8Ar,y) exp (—a(D(Fx) + TV + 8 Ar,y)?)]

— Tr [g(D(Fy) + 8Ay) exp (—a(D(Fy) + §Ay)?)]| < T o)

|Trs [g.AT,Y exp (—a(D(]-'X) +TV+ 8AT,Y)2)]

_ _ I TR O
Tr [g.AY exp( a(D(Fy) + 6 Ay) )]} =77
Since 7 is compact, there exists an open neighborhood ¢/ of 7 in [0, 1] such that (4.21)
hold uniformly for § € U. For § € [0, 1]\U, there is a uniformly lower positive bound of
the absolute value of the spectrum of D(Fy) + §.Ay. So the process of [11, Section 9] also
works. It means that (4.21) hold uniformly for § € [0, 1].
If 7 = ¢, it means that there is a uniformly lower positive bound of the absolute value of
the spectrum of D(Fy) + 8. Ay for § € [0, 1]. Thus (4.21) holds uniformly.
In summary, for « > 0 fixed, when T is large enough, there exists C > 0, such that for
any § € [0, 1], (4.21) holds.
Therefore, from Definition 4.2, (4.2), (4.3) and (4.9), we get Theorem 4.3(i) and (ii).
Foru > 2 and T > Ty, from Definition 4.2, (4.2) and (4.3), we have

" 1
FiT ) = == T [g(D(F) + TV + Ary)

x exp(—u*(D(Fx) + TV + Ar.y)H)]. (4.22)

From [5, Proposition 2.37], (4.14) and (4.22), there exists Cr > 0, depending on 7 > Ty,
such that for u large enough,

|BU(T ., u)| < Cr exp(—cu?). (4.23)
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From the first inequality of (4.21) for 6 = 1, we see that Cr in (4.23) is uniformly bounded
for T > Tp. Thus (iii) follows from (i) and the dominated convergence theorem.
The proof of our theorem is completed. O

Theorem 4.4 Let Ty be the constant in Proposition 3.6. When u — 400, we have

To
lim ,BgT(T, u)dT = chy(sf{D(Fx) + Ax, D(Fx) + ToV + Ay}, (4.24)

u—>+00 Jo
and
oo
lim / BL (T wydT = 0. (4.25)
u——400 Ty
Proof Set
D, 1 = ~u(D(Fx) + x(Vu)(TV + (1 — x(T)Ax + x(T)Ar.y))) (4.26)
and
BT(T u) = ———T e (—(D/> %) 4.27)
o (T u) = N Iy | g oT exp 2T . .
Note that when u > 2,
BT, u) = BL(T,u). (4.28)

The proof of the anomaly formula Theorem 2.6 (cf. [24, Theorem 2.17]) show that

To To
lim / Be (T, w)dT = lim / Be (T.u)dT
0 U—>—+00 0

u—>—+00
= Ng(Fx, Ax) — 1g(Fx, ToV + Ary.v)
= chy (sf{D(Fx) + Ax, D(Fx) + ToV + Ar,.v})). (4.29)

Since D(Fx) + TV + Ar y is invertible for T > Ty, the proof of (4.25) is the same as
[24, Theorem 2.22]. Indeed, as in [25, (6.8)], for u’ > 0 fixed, there exist C > 0, T’ > Ty
and § > O such that foru > u’ and T > T’, we have

c
1B (T, )| < 5 exp(—cu?). (4.30)
The proof of Theorem 4.4 is completed. O

Theorem4.5 (i) Forany u € (0, 1], there exist C > 0 and § > 0 such that, for T large
enough, we have

c
g (T, < - 431

(1) There exist C > 0, y € (0, 1] such that foru € (0,1],0<T < ul,
T 1 26/2
u*lﬂgT (—,u) + . 73
u 2ymV/=1 det'2(1 —glnye ) Jxs
- Cu(l+ 1))
—  sup{T, 1}

A (TX, VX

W TS [, () Ve exp (— REY S e ) | 4.32)
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(iii) Forany T > 0,

lim u™2B] (T /u?, u) = 0. (4.33)
u—0
(iv) There exist C > 0, § € (0, 1] such that foru € (0,11, T > 1,
28T /u?, w)| < < 4.34)
=By (T/u,w)| < o35 (4.

Proof Tt is easy to see that (i) follows directly from (4.30).

Note that in this theorem, u € (0, 1]. By (4.5), the perturbation operator does not appear.
So the proof of (ii)—(iv) here are totally the same as that of [13, Theorem 3.10-3.12] except
for replacing the reference of [11] there by the corresponding reference of [7].

Remark that the setting of this paper uses the language of Clifford modules, not the spin
case in the references. However, there is no additional difficulty for this differences. The
reason is that in each proof of Theorem 4.5(ii)—(iv), we localize the problem first. Locally,
all manifolds are spin and the Clifford module could be written as (2.20).

The proof of Theorem 4.5 is completed. O

Now we use the estimates in Theorems 4.3—4.5 to prove Theorem 4.1.
Proof of Theorem 4.1 From (4.8), we know that
A T A T
/ Be(Ty, wydu— | BI(T,A)dT —/ Be©,wydu+ | B (T, e)dT
3 0 3 0
=R+ L+ 5+ =0. 4.35)

We take the limits A — +00, 71 — 400 and then ¢ — 0 in the indicated order. Let / Jk s

j=1,2,3,4,k =1,2,3 denote the value of the part I]Q after the kth limit.
From Theorem 4.3, (4.10) and the dominated convergence theorem, we conclude that

I} = —fig(Fy, Ap). (4.36)
Furthermore, by Theorem 4.4, we get
I3 = —chy(sfG{D(Fx) + Ax. D(Fx) + ToV + Azy v D). 4.37)
From (4.6), we obtain that
I3 = iig(Fx, Ax). (4.38)

Finally, we calculate the last part. By definition,
T
=1 = / Bg (T, e)dT. (4.39)
0
As Ty — +o00, by Theorem 4.5(i),

+00 +oo
17 :/ Bi (T.e)dT :/ e~ 'Bl(T /e, e)dT. (4.40)
0 0
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Set
1
K = / e By (T /e, £)dT,
0
1
Kzzf e 2B (T /e, e)dT, (4.41)
8+oo
K3:/ e 2B (T /%, e)dT.
1
Clearly,

1} =K1+ K + K». (4.42)
To simplify the notation, we denote by

1 2£2/2
2y/m/=Tdet' (1 = glye )
s TeEX/S [mzz (£5%)V|xe exp (_R?;/S'Xg)] : (4.43)

D(T) :=

Then by Definition 3.3, after changing the variable, we have
[0.¢]
v (Fy. Fx) = / D(T)dT. (4.44)
0
As ¢ — 0, by Theorem 4.5(ii),

1
K| — — Kg(TX,vTX)./ D(T)dT. (4.45)
X8 0

We write K> in the form

'T 1T 2 ~ TX dT
K> :/ —{57 BL(T /e ,g)+/ A (TX,V )D(T/s)}—
e € X T
-1
&
—/ A (TX, VTX)/ D(T)dT. (4.46)
X 1
By Theorem 4.5(ii), there exist C > 0, y € (0, 1] suchthatforO <e <T <1
T —_
‘ {g*lﬁg(T/sz,e) +/ A (TX, VTX)D(T/s)”
& X
T Y
<C <s (1 + —)) < CQ2T)". 4.47)
&
Using Theorem 4.5(iii), (3.25), (4.47) and the dominated convergence theorem, as ¢ — 0,

-~ +00
K> — —/ A (TX,VTX) / D(T)dT. (4.48)
X8 1

Using Theorem 4.5(iii), (iv) and the dominated convergence theorem, we see that as
g — 0,

K3 — 0. (4.49)
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Combining Definition 3.3, (4.42), (4.45), (4.48) and (4.49), we see that as ¢ — 0,
L=- / A(TX, V) yX(Fy, Fx). (4.50)
Xg

Thus (4.1) follows from (4.35)—(4.38) and (4.50).
The proof of Theorem 4.1 is completed. O

4.2 Proof of Theorem 3.7

In this subsection, we use the functoriality of the equivariant eta forms Theorem 2.7 to reduce
the proof of Theorem 3.7 to the case when the base manifold is a point.' Recall that we may
assume that B is compact.

Lemma 4.6 There exist a Zy-graded self-adjoint C(T B)-module (Ep, h%8) and a positive
integer q € 7y such that

A(TB, V") ch(€p/S, V") — ¢
is an exact form for any Euclidean connection V'8 and Clifford connection V5.

Proof Let (&, h%°) be a Z,-graded self-adjoint C(T B)-module. Let V40 be a Clifford con-
nection on (&y, h€0). Then since the G-action is trivial on B, from the definition of the
A-genus and (2.33), there exists m € Z such that

A(TB, VTP . ch(&)/S, V) =m +a, (4.51)

where o € Q°¥°"(B) is a closed form and deg > 2. We choose & such that m > 0.2
Since « is nilpotent,

s k
(AT B, VB)ch(go/S. VE)) ™ = S (—1fF (4.52)
m
k=0
is a closed well-defined even differential form over B. From the isomorphism
ch: K%B)®R > H®"(B,R), (4.53)

there exist positive real number g € R and virtual complex vector bundle E = E, — E_,
such that q_] ch([E]) = [{K(TB, VTB)Ch(&)/S, V‘EO)}_]]. Let VE be a connection
on E. Let £ = &QXE and V&3 = V&% ® 1 + 1 ® VE. Then ch(p/S, VE8) =
ch(&y/S, VE0) ch(E, VE). So we have

[A(TB, V') ch(€p/S, VE8)] = g € HY*"(B,R).

From (4.51), we have g € Z..
The proof of Lemma 4.6 is completed. O

Let (g, h€8) be the C(T B)-module taken in Lemma4.6. Let V8 be a Clifford connection
on (g, h€8). Thus

Fv =V, 75630x, 8T8 @ g"X, mihf8 @ nEX 7k VEE @ 1+ 1@ VEX)  (4.54)

! The author thanks Prof. Xiaonan Ma for pointing out this simplification, which is related to a remark in [8,
Section 7.5].

2 One example is the exterior bundle with the Z;-grading induced by the Hodge star operator (see e.g., [5,
pp- 150]).

@ Springer



Real embedding and equivariant eta forms

is an equivariant geometric family over a point. Let
Fvy= (V.15 EsREx, gTV wsh®8 @ hEx VEY) (4.55)

be the rescaled equivariant geometric family over a point constructed in the same way as in
(2.60).

Lemma 4.7 There existty > 0and T’ > 1, such that forany t > toand T > T’, the operator
D(Fv) +tTV +tAr.y is invertible.

Proof Let f1, ..., f; be alocally orthonormal basis of T B. Let f If’ be the horizontal lift of
fpon THY Letey,...,e, bea locally orthonormal basis of 7' X. Set
: 1
Df = c(f) VX" + o (U T eeene(fpefy). (4.56)

By [25, (5.6)], we have
D(Fv,) +1TV +tAry = t(D(Fx) + TV + Ary) + DE. (4.57)

From Proposition 3.6, since B is compact, there exist ¢ > 0 and T’ > 0, such that for any
s e AT*B)R&, T > T/,

I(D(Fx) + TV + Ar.y)sl} = Elsl3. (4.58)
Let
Ri.r :=t[D(Fx) + TV + Ary, DP1+ DF*. (4.59)
We have
(D(Fy 1) + TV + tAry)? = > (D(Fx) + TV + Ar.y)> + Ri.7. (4.60)

Let | - |7,1 be the norm defined in the same way as [8, Definition 9.13]. In particular,
lIsllo < Islz,1. 4.61)

Note that the perturbation operator Az y is uniformly bounded with respect to 7 > 1.
From the arguments in the proof of [8, Theorem 9.14], we could obtain that there exist
Ci,Cp,C3 >0,suchthatfor7 > 1,t>1,s € A(T*B)@:E”X,

I(D(Fx) + TV + Az y)sli§ = Cilslz ; — Calis5, 62
I(Ri. 75, 8)ol < Cstlsllo-Is|z.1-
Take o = ¢2/(c2 +2C3). By (4.58)—(4.62), for T > T’, t > 1, we have

I(D(Fy0) + 1TV + tAr y)sl§ = (2 (D(Fx) + TV + Ar,y)*s + Ri.7s, s)ol
> (1 — o) |[(D(Fx) + TV + Ar y)s |
+ar?|(D(Fx) + TV + Az v)sl} — [(Ri,7s, 5)ol
> (1 — )P sllg + «Cit?[s|F.; — aCat*[isllg — Cstlisllo - Isl7.1
> aCot?|s||§ + t(@Cit — C3)|slF ;. (4.63)
Take 79 = max{2C3/aCy, 1}. Forany ¢ > tg, T > T’, there exists C > 0, such that

I(D(Fv,0) + TV +tAr y)sld = Ce2|s|I3. (4.64)
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Since D(Fy ;) +tTV + tAr y is self-adjoint, by (4.64), it is surjective. Thus D(Fy ;) +
tTV + t Ar.y is invertible.
The proof of Lemma 4.7 is completed. O

Let
Fw =W, @8y, niyg’ B @ g™, miyh®® @ hY 2, VEE @ 1 + 1@ VEY)  (4.65)
be the equivariant geometric family over a point. Let
Fw.=W,mh Ry, eIV, wih @ he VEV) (4.66)

be the rescaled equivariant geometric family constructed in the same way as in (2.60) and
(4.55).

Let 1y be the constant taking in Lemma 4.7. We may assume that when t > 9, D(Fw ;) +
1®t Ay is invertible by the arguments before Theorem 2.7. By Theorem 2.7 and Lemma 4.7,
we have

Te(Fw 1oy 1810 Ay) = / AT B, VIB)ch(Ep/S, VEB) Ty (Fy, Ay)
B

<z TW oTBTY wéw 0w
—/Wg (Ag.chg) (V;O v L VEW 0y W) (4.67)

and
Mo (Fv .1, 1®t0T'V + to A7 y))
= / A(TB,VTB)ch(Ep/S, VEB) iy (Fx, T'V + Apry)
B
NP 3
—/Vg (Ag -chg> (v,ﬁV, vIBTX gEv, OVS"). (4.68)
Set

Ap = 7g(Fx, T'V + Arry) — f1g(Fy, Ay)

—/ A (TX, V%) yX(Fy. Fx) € @*(B,C)/Imd. (4.69)
X8

From [53, (1.17)], Theorem 3.4 and (2.45), we have d8 Ap = 0.

Recall that V € End c(rx) (Ex) satisfies the fundamental assumption (3.13) with respect to
Fy and Fx. Let 1®V is the extension of V on Ty ®Ex. Then L@V satisfies the fundamental
assumption (3.13) with respect to Fy and Fy . Furthermore, 1®¢V satisfies the fundamental
assumption (3.13) with respect to Fw ; and Fy ;. Observe that yg‘/ (Fw,s, Fv,:) does not

depend on ¢t. We also denote it by )/gV (Fw, Fv).
From Theorem 4.1, if dim V is odd, there exists 7o > 0 such that

g (FV 1 Av) = iig(Fw . 1810 Ay) + / ATX VI y X (Fw. Fv)
1%

+ chg SfG{D(Fv 1) + Av, D(Fv 1) + 1&(TotoV + to Az v)})-
4.70)

We may assume that 7o > T’, which is determined in Lemma 4.7. By anomaly formula
Theorem 2.6, we have
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g (Fv 19 1&(TotoV + 10.AT, v)) = Tig(Fw 105 1&10.Ay)

+/ ATV, VYY) (Fw. Fv). (@71
Ve

Note that if dim V is even, (4.71) also holds, because in this case all terms in (4.71) vanish.
From the anomaly formula Theorem 2.6, Lemma 4.7 and (4.71), for ¢t > ty, we have

NS TV 9TV & £
/‘;g (Ag ' Chg) (V"’ ’ Vt ’ VtOV’ V’ V)
= ~ £ £
- /Wg (Rg - che) (V. 9. vev, viv)
—/ ATV VIV v (Fw. Fv) +/ ATV V'Y v (Fw. Fv).  (472)
Vs Ve

Note that locally the manifolds are spin. From [25, Proposition 4.5] and the arguments in
[25, Section 5.5], we have

: NS TV 9TV & £
Jim RENICAR AR AR AN

NI £
= (Ag ~chy) (V. VTETX viv OvEy) 4.73)

and

S TV _ & TB.TX

Jim ATV, VY = R(TV. V )
=75 A(TB, VIB) . A (T X, VTY). (4.74)

By Definition 3.3, we have

ve (Fw, Fv) = ch(€p/S, VE )y X (Fy, Fx). (4.75)

From Lemma 4.6 and (4.67)—(4.75), since B is compact, we have
/ Ag=gq! / A(TB,VTB)ch(Ep/S, VEB) - Ag = 0. (4.76)
B B

Let K be a compact oriented submanifold of B. Let Fy|gx and Fx|g be the restrictions
of Fy and Fx on K. Let Tp > 1 be the constant determined in Proposition 3.6 associated
with B. Then (TV + Ar.y)|k is the perturbation operator with respect to D(Fx|g) over K
for T > Tj. Set

Ak = 1g(Fxlk, (ToV + Aryv)lk) — g (Fylk, Ay lk)

+/ Kg(TX,v”)ng(fy|K,fx|K) € Q*(K,C)/Imd. 4.77)
X8

From Definition 2.4 and 3.3, we could see that [, Ap = [ Ak.
On the other hand, from (4.76), we have f x Ax = 0. So for any compact oriented
submanifold K of B, we have

/ Ap = 0. (4.78)
K

By a result of Thom [30, Theorem 2.29], for any homology class h € H.(B, Z), there is
n € Z and a compact oriented submanifold K such that K presents nk. Thus Ap is exact on
B. Therefore, we obtain Theorem 3.7 from the anomaly formula Theorem 2.6.

The proof of our main result is completed.
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