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Abstract
Bismut and Zhang (Math Ann 295(4):661–684, 1993) establish a modZ embedding formula
of Atiyah–Patodi–Singer reduced eta invariants. In this paper, we explain the hidden modZ
term as a spectral flow and extend this embedding formula to the equivariant family case.
In this case, the spectral flow is generalized to the equivariant Chern character of some
equivariant Dai–Zhang higher spectral flow.
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B. Liu

1 Introduction

Let i : Y → X be an embedding between two odd dimensional compact oriented spin
manifolds. For any Hermitian vector bundle μ over Y carrying a Hermitian connection,
under a natural assumption, Bismut and Zhang [13] establish a modZ formula, expressing
the Atiyah–Patodi–Singer reduced eta invariant [2] of certain direct image of μ over X ,
through the reduced eta invariant of the bundle μ over Y , up to some geometric Chern–
Simons current.

In this paper, we explain the hidden modZ term as a spectral flow in Bismut–Zhang
embedding formula and extend this embedding formula to the equivariant family case. In this
case, the spectral flow is generalized to the equivariant Chern character of some equivariant
Dai–Zhang higher spectral flow [18].

Themainmotivation of this generalization is to look for a generalGrothendieck–Riemann–
Roch theorem in the equivariant differential K-theory, which is already established in many
important cases [15,16,22]. Roughly speaking, the differential K-theory is the smooth version
of the arithmetic K-theory in Arakelov geometry. Our main result here is expected to play the
same role in the equivariant differential K-theory of the Bunke–Schick model [15,16,24] as
the Bismut–Lebeau embedding formula [11] does in the proof of Arithmetic Grothendieck–
Riemann–Roch theorem in Arakelov geometry.

In this paper, we do not assume the manifold is spin or spinc. We consider the general
Clifford modules.

Let π : W → B be a smooth submersion of smooth oriented manifolds with compact
fibres Y . Let T Y = T W/B be the relative tangent bundle to the fibres Y . Let T H

π W be
a horizontal subbundle of T W . Let gT Y be a Riemannian metric on T Y . Let C(T Y ) be
the Clifford algebra bundle of (T Y , gT Y ) and (E, hE ) be a Z2-graded self-adjoint C(T Y )-
module with Clifford connection ∇E (cf. (2.16) and (2.17)). Let G be a compact Lie group
which acts fiberwisely on W , i.e., for any g ∈ G, π ◦ g = π . We assume that the action
of G preserves the horizontal bundle T H

π W and the orientation of T Y and could be lifted
on E such that it is compatible with the Clifford action and the Z2-grading. We assume that
gT Y , hE , ∇E are G-invariant. For any g ∈ G, the equivariant Bismut–Cheeger eta form
η̃g(F,A) ∈ �∗(B,C)/Im d is defined in Definition 2.4 up to exact forms with respect to the
equivariant geometric family F = (W , E, T H

π W , gT Y , hE ,∇E ) (cf. Definition 2.1) over B
and a perturbation operator A (cf. Definition 2.3). Remark that if B is a point and dim Y is
odd, then the equivariant eta form here degenerates to the canonical equivariant reduced eta
invariant by taking a special perturbation operator [24, Remark 2.20].

Let i : W → V be an equivariant embedding of smooth G-equivariant oriented manifolds
with even codimension. Let πV : V → B be a G-equivariant submersion with compact fibres
X , whose restriction πW : W → B is an equivariant submersion with compact fibres Y . We
assume that G acts on B trivially and the normal bundle NY/X to Y in X has an equivariant
Spinc structure.

Y W

X V B.

i i
πV

πW

Let FY = (W , EY , T H
πW

W , gT Y , hEY ,∇EY ) and FX = (V , EX , T H
πV

V , gT X , hEX ,∇EX )

be two equivariant geometric families over B such that (T H
πW

W , gT Y ) and (T H
πV

V , gT X )

satisfy the totally geodesic condition (3.11).
We state our main result of this paper as follows.
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Real embedding and equivariant eta forms

Theorem 1.1 Assume that NY/X has an equivariant Spinc structure and the equivariant
geometric families FY and FX satisfy the fundamental assumption (3.13) and (3.15). Let AY

and AX be the perturbation operators with respect to FY and FX . Then for any compact
submanifold K of B, there exists T0 > 2, which depends on K , such that for any T ≥ T0,
modulo exact forms on B, over K , we have

η̃g(FX ,AX ) = η̃g(FY ,AY )+
∫

X g
Âg(T X ,∇T X ) γ X

g (FY ,FX )

+ chg(sfG{D(FX )+AX , D(FX )+ TV +AT ,Y }). (1.1)

Here γ X
g (FY ,FX ) is the equivariant Bismut–Zhang current defined in Definition 3.3 and

AT ,Y is the operator given in Proposition 3.6. The last term in (1.1) is the equivariant Chern
character of the equivariant Dai–Zhang higher spectral flow which explains the modZ term
in the original Bismut–Zhang embedding formula.

The proof of our main result here is highly related to the analytical localization technique
developed in [7,8,11,12]. Thanks to the functoriality of equivariant eta forms proved in
[24,25], we only need to prove the embedding formula when B is a point and dim X is odd.

Note that in [21,31], the authors give another proof of the Bismut–Zhang embedding
formula without using the analytical localization technique. It is interesting to ask whether
there is another proof of our main result here from that line.

Our paper is organized as follows. In Sect. 2, we summarize the definition and the prop-
erties of equivariant eta forms in [24] using the language of Clifford modules. In Sect. 3, we
state our main result. We also discuss an application on the equivariant Atiyah–Hirzebruch
direct image. In Sect. 4, we prove our main result in two steps. In Sect. 4.1, we prove Theo-
rem 1.1 when the base space B is a point following [13]. In Sect. 4.2, we explain how to use
the functoriality to reduce the proof of Theorem 1.1 to the case considered in Sect. 4.1.

Notation We use the Einstein summation convention in this paper.
We also use the superconnection formalism of Quillen [28] and Bismut–Cheeger [9]. If A

is a Z2-graded algebra, and if a, b ∈ A, then we will note [a, b] as the supercommutator of
a, b. If B is another Z2-graded algebra, we will note A⊗̂B as the Z2-graded tensor product.

For a fibre bundle π : V → B, we will often use the integration of the differential forms
along the oriented fibres X in this paper. Since the fibres may be odd dimensional, we must
make precise our sign conventions: for α ∈ �∗(B) and β ∈ �∗(V ), then

∫
X
(π∗α) ∧ β = α ∧

∫
X

β. (1.2)

2 Equivariant eta forms

In this section, we summarize the definition and the properties of equivariant eta forms in
[24,25] using the language of Clifford modules. Note that locally all manifolds are spin. The
proofs of them are the same as in the spin case. In Sect. 2.1, we recall elementary results
on Clifford algebras. In Sect. 2.2, we describe the geometry of the fibration and recall the
Bismut superconnection. In Sect. 2.3,we define the equivariant eta form and state the anomaly
formula. In Sect. 2.4, we explain the functoriality of the equivariant eta forms.
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2.1 Clifford algebras

Let E be an oriented Euclidean vector space, such that dim E = n, with orthonormal basis
{ei }1≤i≤n . Let C(E) be the complex Clifford algebra of E defined by the relations

ei e j + e j ei = −2δi j . (2.1)

Sometimes, we also denote by c(e) the element of C(E) corresponding to e ∈ E . Let Spinc
n

be the Spinc group associated with C(E) (see [23, Appendix D]).
If e ∈ E , let e∗ ∈ E∗ correspond to e by the scalar product of E . The exterior algebra

	(E∗)⊗R C is a module of C(E) defined by

c(e)α = e∗ ∧ α − ιeα (2.2)

for any α ∈ 	(E∗) ⊗R C. The map a �→ c(a) · 1, a ∈ C(E), induces an isomorphism of
vector spaces

σ : C(E) → 	(E∗)⊗R C. (2.3)

If n is even, up to isomorphism, C(E) has a unique irreducible module, the spinor S(E),
which is Z2-graded. We denote by S(E) = S+(E) ⊕ S−(E). Moreover, there are isomor-
phisms of Z2-graded algebras

C(E) 
 End(S(E)) 
 S(E)⊗̂S(E)∗. (2.4)

Note that S(E) is a representation of Spinc
n induced by the Clifford action.

If n is odd, C(E) has two (inequivalent) irreducible modules. However, their restriction
to Spinc

n are equivalent irreducible representations, which we denote by S(E). We have

C(E) 
 End(S(E))⊕ End(S(E)). (2.5)

Let F be another oriented Euclidean vector space. Then

C(E ⊕ F) 
 C(E)⊗̂C(F). (2.6)

Let us introduce the convention for the tensor product of Clifford modules which will be
used in the whole paper. Let X and Y be two representations of C(E) and C(F). If both
dim E and dim F are odd, put

X ⊗̂Y = X ⊗ Y ⊗ C
2. (2.7)

By [9, (1.10)], X ⊗̂Y is a Z2-representation of C(E)⊗̂C(F). If dim E is odd, if dim F is
even, and if Y is Z2-graded, then put

X ⊗̂Y = X ⊗ Y. (2.8)

By [9, (1.11)], X ⊗̂Y is a representation of C(E)⊗̂C(F). If both dim E and dim F are even
and if both X ,Y are Z2-graded, we define X ⊗̂Y as (2.8) with the same action defined in [9,
(1.11)]. Then X ⊗̂Y is a Z2-representation of C(E)⊗̂C(F).

With the above convention, we have the isomorphism of Clifford modules

S(E ⊗ F) 
 S(E)⊗̂S(F). (2.9)
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2.2 Bismut superconnection

Let π : W → B be a smooth submersion of smooth oriented manifolds with compact fibres
Y . We assume that B is connected. Remark that W here is not assumed to be connected. To
simplify the notations, we usually denote the connected component by W when there is no
confusion.

Let T Y = T W/B be the relative tangent bundle to the fibres Y . Then T Y is orientable.
Let T H

π W be a horizontal subbundle of T W such that

T W = T H
π W ⊕ T Y . (2.10)

The splitting (2.10) gives an identification

T H
π W ∼= π∗T B. (2.11)

If there is no ambiguity, we will omit the subscript π in T H
π W .

Let gT Y , gT B be Riemannian metrics on T Y , T B. We equip T W = T H W ⊕ T Y with
the Riemannian metric

gT W = π∗gT B ⊕ gT Y . (2.12)

Let ∇T W , ∇T B be the Levi-Civita connections of (W , gT W ), (B, gT B). Let PT Y be the
projection PT Y : T W = T H W ⊕ T Y → T Y . Set

∇T Y = PT Y∇T W PT Y . (2.13)

Then ∇T Y is a Euclidean connection on T Y .
Let ∇T B,T Y be the connection on T W = T H W ⊕ T Y defined by

∇T B,T Y = π∗∇T B ⊕∇T Y . (2.14)

Then ∇T B,T Y preserves the metric gT W in (2.12).
Set

S = ∇T W − ∇T B,T Y . (2.15)

Then S is a 1-form on W with values in antisymmetric elements of End(T W ). By [6, Theo-
rem1.9], we know that∇T Y and the (3, 0)-tensor gT W (S(·)·, ·) only depend on (T H W , gT Y ).

Let C(T Y ) be the Clifford algebra bundle of (T Y , gT Y ), whose fibre at x ∈ W is the
Clifford algebraC(Tx Y ) of the Euclidean vector space (Tx Y , gTx Y ). AZ2-graded self-adjoint
C(T Y )-module,

E = E+ ⊕ E−, (2.16)

is a Z2-graded vector bundle equipped with a Hermitian metric hE preserving the splitting
(2.16) and a fiberwise Clifford multiplication c of C(T Y ) such that the action c restricted to
T Y is skew-adjoint on (E, hE ) and anticommutes (resp. commutes) with the Z2-grading if
the dimension of the fibres is even (resp. odd). Let τE be the Z2-grading of E which is ±1
on E±.

Let ∇E be a Clifford connection on E associated with ∇T Y , that is, ∇E preserves hE and
the splitting (2.16) and for any U ∈ T W , Z ∈ C∞(W , T Y ),

[∇E
U , c(Z)] = c(∇T Y

U Z). (2.17)

Let {Wα} be the connected components of W . Then π |Wα : Wα → B is a smooth submer-
sion with compact fibres Yα .
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For a locally oriented orthonormal basis e1, . . . , edim Yα of T Yα , we define the chirality
operator on E|Wα by


α =
{

(
√−1)dim Yα/2c(e1) · · · c(edim Yα ), if dim Yα is even;
IdE|Wα

, if dim Yα is odd.
(2.18)

Note that our definition here is different from [5, Lemma 3.17] when dim Yα is odd. Then

α does not depend on the choice of the basis and is globally defined. We note that 
2

α = 1
and [τE , 
α] = 0. Set

τE/S
α = τE · 
α. (2.19)

Then (τ
E/S
α )2 = 1.

Locally, we could write

E|Wα = S0(T Yα)⊗̂ξ, (2.20)

where S0(T Yα) is the spinor bundle for the (possibly non-existent) spin structure of T Yα

and ξ = ξ+ ⊕ ξ− is a Z2-graded vector bundle. Then 
α , τ
E/S
α and τE correspond to the

Z2-gradings of S0(T Yα), ξ and S0(T Yα)⊗̂ξ .
LetG be a compactLie groupwhich acts onW and B such that for any g ∈ G,π◦g = g◦π .

We assume that the action of G preserves the splitting (2.10) and the orientation of T Y and
could be lifted on E such that it is compatible with the Clifford action and preserves the
splitting (2.16). We assume that gT Y , hE , ∇E are G-invariant.

Definition 2.1 (Compare with [15, Definition 2.2], [24, Definition 1.1]) An equivariant geo-
metric family F over B is a family of G-equivariant geometric data

F = (W , E, T H W , gT Y , hE ,∇E ) (2.21)

described as above. We call the equivariant geometric family F is even (resp. odd) if for any
connected component of fibres, the dimension of it is even (resp. odd).

Let D(F) be the fiberwise Dirac operator

D(F) = c(ei )∇E
ei

(2.22)

associatedwith the equivariant geometric familyF . Then theG-action commuteswith D(F).
For b ∈ B, let Eb be the set of smooth sections over Yb of Eb. As in [6], we will regard E

as an infinite dimensional fibre bundle over B. If V ∈ T B, let V H ∈ T H W be its horizontal
lift in T H W so that π∗V H = V . For any V ∈ T B, s ∈ C∞(B, E ) = C∞(W , E), the
connection

∇E ,u
V s := ∇E

V H s − 1

2
〈S(ei )ei , V H 〉 s (2.23)

preserves the L2-product on E (see e.g., [10, Proposition 1.4]). Let { f p} be a local frame

of T B and { f p} be its dual. We denote by ∇E ,u = f p ∧ ∇E ,u
f p

. We denote by c(T H ) =
− 1

2 c(PT Y [ f H
p , f H

q ]) f p ∧ f q ∧ . By [6, (3.18)], the rescaled Bismut superconnection Bu :
C∞(B,	(T ∗B)⊗̂E ) → C∞(B,	(T ∗B)⊗̂E ) is defined by

Bu =
√

u D(F)+ ∇E ,u − 1

4
√

u
c(T H ). (2.24)

Obviously, the Bismut superconnection Bu commutes with the G-action. Furthermore, B2
u

is a 2-order elliptic differential operator along the fibres Y . Let exp(−B2
u) be the family of
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heat operators associated with the fiberwise elliptic operator B2
u . Then exp(−B2

u) is a smooth
family of smoothing operators (see e.g., [5, Theorem 9.51]).

Let P be a section of 	(T ∗B)⊗̂End(E ). Set

Trs[P] := Tr[τE P] ∈ 	(T ∗B). (2.25)

Here the trace operator on the right hand side of (2.25) only acts on E . We use the convention
that if ω ∈ 	(T ∗B),

Trs[ωP] = ω Trs[P]. (2.26)

It is compatible with the sign convention (1.2). We denote by Trodd/evens [P] the part of Trs[P]
which takes values in odd or even forms. Set

T̃r[P] =
{
Trs[P], if dim Y is even;
Trodds [P], if dim Y is odd.

(2.27)

2.3 Equivariant eta forms

In this subsection, we state the definition and the anomaly formula of equivariant eta forms
in the language of Clifford modules.

In the rest of the paper, we assume that G acts trivially on B.
Take g ∈ G and set W g = {x ∈ W : gx = x}. Then W g is a submanifold of W and

π |W g : W g → B is a fibre bundle with compact fibres Y g . Let NW g/W denote the normal
bundle of W g in W , then NW g/W = T W/T W g = T Y/T Y g . We also denote it by NY g/Y .

The differential of g gives a bundle isometry dg : NY g/Y → NY g/Y . Since g lies in a
compact abelian Lie group, we know that there is an orthonormal decomposition of smooth
vector bundles over W g

T Y |W g = T Y g ⊕ NY g/Y = T Y g ⊕
⊕

0<θ≤π

N (θ), (2.28)

where dg|N (π) = −Id and for each θ , 0 < θ < π , N (θ) is a complex vector bundle on which
dg acts by multiplication by eiθ . Since g preserves the metric and the orientation of T Y ,
det(dg|N (π)) = 1. Thus dim N (π) is even. So the normal bundle NY g/Y is even dimensional.

Observe that if N (π) = 0 or if T Y has a G-equivariant Spinc structure, then T Y g is
canonically oriented (cf. [5, Proposition 6.14], [25, Proposition 2.1]). In general, T Y g is not
necessary orientable. In this paper we assume that T Y g is orientable and fix an orientation
of T Y g . In this case NY g/Y is canonically oriented.

Let E be an equivariant real Euclidean vector bundle over W . We could get the decom-
position of real vector bundles over W g in the same way as (2.28),

E |W g =
⊕

0≤θ≤π

E(θ). (2.29)

Here we also denote E(0) by Eg .
Let∇E be an equivariant Euclidean connection on E . Then it preserves the decomposition

(2.29). Let ∇Eg
and ∇E(θ) be the corresponding induced connections on Eg and E(θ), and

let REg
and RE(θ) be the corresponding curvatures.

123



B. Liu

Set

Âg(E,∇E ) = det
1
2

⎛
⎝

√−1
4π REg

sinh
(√−1

4π REg
)
⎞
⎠

·
∏

0<θ≤π

(√−1 1
2 dimR E(θ)

det
1
2

(
1− g exp

(√−1
2π

RE(θ)

)))−1
. (2.30)

Let EndC(T Y )(E) be the set of endomorphisms of E supercommuting with the Clifford
action. Then it is a vector bundle over W . Let EndC(T Y )(E)x be the fiber at x ∈ W . For any
a ∈ EndC(T Y )(E)x and x ∈ Wα , we define the relative trace TrE/S : EndC(T Y )(E)x → C by
(cf. [5, Definition 3.28])

TrE/S [a] =
{
2− dim Yα/2 Trs[
αa], if dim Yα is even;
2−(dim Yα−1)/2 Trs[a], if dim Yα is odd.

(2.31)

The relative trace could be naturally extended on C∞(W , π∗	(T ∗B)⊗EndC(T Y )(E)) as in
(2.26).

Let RE be the curvature of ∇E . Let

RE/S := RE − 1

4
〈RT Y ei , e j 〉c(ei )c(e j )

∈ C∞(W , π∗	(T ∗B)⊗ EndC(T Y )(E)) (2.32)

be the twisting curvature of the C(T Y )-module E as in [5, Proposition 3.43].
By [5, Lemma 6.10], along W g , the action of g ∈ G on E may be identified with

a section gE of C(NY g/Y ) ⊗C EndC(T Y )(E). Let dim NY g/Y = �1. Under the isomor-
phism (2.3), σ(gE ) ∈ C∞(W g,	N∗

Y g/Y ⊗R EndC(T Y )(E)). Since we assume that NY g/Y

is oriented, paring with the volume form, we could get the highest degree coefficient
σ�1(g

E ) ∈ C∞(W g,EndC(T Y )(E)) of σ(gE ).
Then we could define the localized relative Chern character chg(E/S,∇E ) ∈ �∗(W g,C)

in the same way as [5, Definition 6.13] by

chg(E/S,∇E ) := 2�1/2

det1/2(1− g|NY g/Y
)
TrE/S

[
σ�1(g

E ) exp

(
− RE/S |W g

2π
√−1

)]
. (2.33)

Note that if T Y has an equivariant spin structure, the localized relative Chern character here
is just the usual equivariant Chern character.

Recall that if B is compact, the equivariant K -group K 0
G(B) is the Grothendieck group

of the equivalent classes of the equivariant vector bundles over B. Let ι : B → B × S1 be a
G-equivariant inclusion map. It is well known that if the G-action on S1 is trivial,

K 1
G(B) 
 ker

(
ι∗ : K 0

G(B × S1) → K 0
G(B)

)
. (2.34)

For x ∈ K 0
G(B), g ∈ G, the classical equivariant Chern character map sends x to chg(x) ∈

H even(B,C). By (2.34), for x ∈ K 1
G(B), we can regard x as an element x ′ in K 0

G(B × S1).
The odd equivariant Chern character map

chg : K 1
G(B) −→ Hodd(B,C) (2.35)

is defined by (cf. e.g., [25, (2.52)])

chg(x) :=
∫

S1
chg(x ′). (2.36)
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We adopt the sign convention as in (1.2).
Furthermore, the classical construction of Atiyah–Singer [3,4] assigns to each even (resp.

odd) equivariant geometric family F its equivariant (analytic) index ind(D(F)) ∈ K 0
G(B)

(resp. K 1
G(B)).

For α ∈ � j (B), set

ψB(α) =
⎧⎨
⎩

(
2π
√−1)− j

2 · α, if j is even;
1√
π

(
2π
√−1)− j−1

2 · α, if j is odd.
(2.37)

The following family local index theorem is a well-known result (see e.g., [25, Theo-
rem 2.2]).

Theorem 2.2 For any u > 0 and g ∈ G, the differential form ψB T̃r[g exp(−B2
u)] ∈

�∗(B,C) is closed and its cohomology class is independent of u > 0. As u → 0,

lim
u→0

ψB T̃r[g exp(−B2
u)] =

∫
Y g

Âg(T Y ,∇T Y ) chg(E/S,∇E ). (2.38)

If B is compact, the closed form ψB T̃r[g exp(−B2
u)] represents the class chg(ind(D(F))).

Definition 2.3 [24,Definition 2.10]Aperturbation operatorwith respect to D(F), denoted by
A, is defined to be a smooth family of G-equivariant bounded self-adjoint pseudodifferential
operators on E along the fibres such that it commutes (resp. anti-commutes) with the Z2-
grading of E when the fibres are odd (resp. even) dimensional, and D(F)+A is invertible.

Remark that from [24, Proposition 2.3], if B is compact and at least one component of
the fibres has the non-zero dimension, then there exists a perturbation operator with respect
to D(F) if and only if ind(D(F)) = 0 ∈ K ∗

G(B).
In the followings, we always assume that there exists a perturbation operator with respect

to D(F) on F .
For α ∈ 	(T ∗(R× B)), we can expand α in the form

α = du ∧ α0 + α1, α0, α1 ∈ 	(T ∗B). (2.39)

Set

[α]du := α0. (2.40)

Let χ ∈ C∞
0 (R) be a cut-off function such that

χ(u) =
{
0, if u ≤ 1;
1, if u ≥ 2.

(2.41)

LetA be a perturbation operator with respect to D(F). ThenA could be extended to 1⊗̂A
on C∞(B, π∗	(T ∗B)⊗̂E) as an element of the Z2-graded tensor product of Z2-graded
algebras. In this case, we have

(α⊗̂1)(1⊗̂A) = (−1)degα(1⊗̂A)(α⊗̂1). (2.42)

We usually abbreviate 1⊗̂A by A when there is no confusion. Set

B
′
u = Bu +

√
uχ(

√
u)A. (2.43)
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Definition 2.4 [24, Definition 2.11] For any g ∈ G, modulo exact forms on B, the equivariant
Bismut–Cheeger eta form with perturbation operator A is defined by

η̃g(F,A) := −
∫ ∞

0

{
ψR×B T̃r

[
g exp

(
−

(
B
′
u + du ∧ ∂

∂u

)2
)]}du

du

∈ �∗(B,C)/Im d. (2.44)

Remark that by our convention in Sect. 2.1, du anti-commutes with A and c(v) for any
v ∈ T Y .

From the discussion in [24, Section 2.3], the equivariant eta form with perturbation in
Definition 2.4 is well defined and does not depend on the cut-off function. Moreover, since
we assume that Y g is oriented, we have (cf. [24, (2.44)])

d B η̃g(F,A) =
∫

Y g
Âg(T Y ,∇T Y ) chg(E/S,∇E ). (2.45)

Remark 2.5 After changing the variable, we have

η̃g(F,A) = −
∫ ∞

0

{
ψR×B T̃r

[
g exp

(
−

(
B
′
u2 + du ∧ ∂

∂u

)2
)]}du

du. (2.46)

We will often use this formula as the definition of the equivariant eta form.

Explicitly,

η̃g(F,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

0

1√
π

ψB Trevens

[
g

∂B′
u2

∂u
exp(−(B′u2)

2)

]
du

∈ �even(B,C)/Im d, if F is odd;
∫ ∞

0

1

2
√

π
√−1ψB Trs

[
g

∂B′
u2

∂u
exp(−(B′u2)

2)

]
du

∈ �odd(B,C)/Im d, if F is even.

(2.47)

From [24, Remark 2.20], when B is a point, dim Y is odd, letting A = Pker D(FY ) be the
orthogonal projection onto the kernel of D(FY ), the equivariant eta form η̃g(F,A) is just
the equivariant reduced eta invariant defined in [20]. Note that from (2.47), if B is a point
and dim Y is even, we have η̃g(F,A) = 0 for any perturbation operator A.

Let F = (W , E, T H W , gT Y , hE ,∇E ) and F ′ = (W , E, T
′H W , g

′T Y , h
′E ,∇′E ) be two

equivariant geometric families over B. Let(˜̂Ag · c̃hg

)
(∇T Y ,∇′T Y ,∇E ,∇′E ) ∈ �∗(W g,C)/Imd

be the Chern–Simons class (cf. [27, Appendix B]) such that

d
(˜̂Ag · c̃hg

)
(∇T Y ,∇′T Y ,∇E ,∇′E )

= Âg(T Y ,∇′T Y ) chg(E/S,∇′E )− Âg(T Y ,∇T Y ) chg(E/S,∇E ). (2.48)

When B is compact, let sfG{(D(F ′)+A′, P ′), (D(F)+A, P)} ∈ K ∗
G(B), whichwe often

simply denote by sfG{D(F ′)+A′, D(F)+A}, be the equivariant Dai–Zhang higher spectral
flow defined in [24, Definition 2.5, 2.6], where P , P ′ are the orthonormal projections onto
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the eigenspaces of positive eigenvalues with respect to D(F)+A, D(F ′)+A′ respectively.
If B is a point and dim Y is odd, it is just the canonical equivariant spectral flow.

The following anomaly formula is proved in [24, Theorem 2.17] and [25, Theorem 2.7].

Theorem 2.6 Let A,A′ be perturbation operators with respect to D(F), D(F ′) respectively.
For any g ∈ G, modulo exact forms on B, we have

(a) if B is compact, then

η̃g(F ′,A′)− η̃g(F,A) =
∫

Y g

(˜̂Ag · c̃hg

) (
∇T Y ,∇′T Y ,∇E ,∇′E

)

+ chg(sfG{D(F ′)+A′, D(F)+A}); (2.49)

(b) if B is noncompact and there exists a smooth path (Fs,As), s ∈ [0, 1], connecting
(F,A) and (F ′,A′) such that for any s ∈ [0, 1], As is the perturbation operator of
D(Fs), then

η̃g(F ′,A′)− η̃g(F,A) =
∫

Y g

(˜̂Ag · c̃hg

) (
∇T Y ,∇′T Y ,∇E ,∇′E

)
. (2.50)

2.4 Functoriality

LetπM : U → W be aG-equivariant submersion of smoothmanifoldswith compact oriented
fibres M . Let (EM , hEM ) be a Z2-graded self-adjoint equivariant C(T M)-module. Let

FM = (U , EM , T H
πM

U , gT M , hEM ,∇EM ) (2.51)

be aG-equivariant geometric family overW . ThenπZ := π◦πM : U → B is aG-equivariant
submersion with compact oriented fibres Z , whose orientation is induced by the orientations
of Y and M . Then we have the diagram of submersions:

M Z U

Y W B.

πM
π

πZ

Set T H
πM

Z := T H
πM

U ∩ T Z . Then we have the splitting of smooth vector bundles over U ,

T Z = T H
πM

Z ⊕ T M, (2.52)

and

T H
πM

Z ∼= π∗
M T Y . (2.53)

Take the geometric data (T H
πZ

U , gT Z
T ) of πZ such that T H

πZ
U ⊂ T H

πM
U ,

gT Z
T = π∗

M gT Y ⊕ 1

T 2 gT M (2.54)

and gT Z = gT Z
1 . We denote the Clifford algebra bundle with respect to gT Z

T by CT (T Z) and
the corresponding 1-form in (2.15) by ST .

Let {ei }, { f p} be local orthonormal frames of T M , T Y with respect to gT M , gT Y respec-
tively. Now {T ei } is a local orthonormal frame of T M with respect to the rescaled metric
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T−2gT M . Let f H
p be the horizontal lift of f p with respect to (2.52). Nowwe define a Clifford

algebra homomorphism

GT : (CT (T Z), gT Z
T ) → (C(T Z), gT Z ) (2.55)

by GT (cT ( f H
p )) = c( f H

p ) and GT (cT (T ei )) = c(ei ). Under this homomorphism,

EZ := π∗
MEY ⊗̂EM (2.56)

with induced Hermitian metric hEZ is a Z2-graded self-adjoint equivariant CT (T Z)-module.
Let

0∇EZ := π∗
M∇EY ⊗ 1+ 1⊗∇EM . (2.57)

Then it is a Clifford connection on EZ associated with

∇T Y ,T M := π∗
M∇T Y ⊗ 1+ 1⊗∇T M . (2.58)

Now, we denote the Levi-Civita connection on T Z with respect to gT Z
T by ∇T Z

T . Then we
could calculate that

∇EZ
T := 0∇EZ + 1

2
〈ST T ei , f H

p 〉T cT (T ei )c( f H
p )

+ 1

4
〈ST f H

p , f H
q 〉T c( f H

p )c( f H
q ) (2.59)

is a Clifford connection associated with∇T Z
T , where 〈·, ·〉T = gT Z

T (·, ·) (cf. [25, (4.3)]). Thus
we get a rescaled equivariant geometric family

FZ ,T := (U , EZ , T H
πZ

U , gT Z
T , hEZ ,∇EZ

T ) (2.60)

over B. We write FZ = FZ ,1.
Let AM be a perturbation operator with respect to D(FM ). Then AM could be extended

to 1⊗̂AM on C∞(U , π∗
Z 	(T ∗B)⊗̂π∗

MEY ⊗̂EM ).
In [24, Lemma 2.15], we prove that for any compact submanifold K of B, there exists

T0 > 0 such that for T ≥ T0, 1⊗̂TAM is a perturbation operator with respect to D(FZ ,T )

over K .
The following theorem is the Clifford module version of [24, Lemma 2.16], which is

related to [17, Theorem 0.1], [26, Theorem 3.1], [14, Theorem 5.11] and [25, Theorem 3.4].

Theorem 2.7 For any compact submanifold K of B, there exists T0 > 0 such that for T ≥ T0,
modulo exact forms on B, over K , we have

η̃g(FZ ,T , 1⊗̂TAM ) =
∫

Y g
Âg(T Y ,∇T Y ) chg(EY /S,∇EY ) η̃g(FM ,AM )

−
∫

Z g

(˜̂Ag · c̃hg

) (
∇T Z

T ,∇T Y ,T M ,∇EZ
T , 0∇EZ

)
. (2.61)

3 Embedding of equivariant eta forms

In this section, we state our main result and give an application in equivariant Atiyah–
Hirzebruch direct image. In Sect. 3.1, we describe the geometry of the embedding of
submersions. In Sect. 3.2, we explain our assumptions on the embedding of the geomet-
ric families. In Sect. 3.3, we introduce the equivariant Atiyah–Hirzebruch direct image. In
Sect. 3.4, we state our main result.
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3.1 Embedding of submersions

In this subsection, we introduce the embedding of submersions following [8, Section 1] and
[12].

Let i : W → V be an embedding of smooth orientedmanifolds. LetπV : V → B be a sub-
mersion of smooth orientedmanifoldswith compact fibres X , whose restrictionπW : W → B
is a smooth submersion with compact fibres Y .

Thus, we have the diagram of maps

Y W

X V B.

i i
πV

πW

In general, B, V , W are not connected.We simply assume that B and V are connected. For
any connected component Wα of W , we assume that dim V − dim Wα is even. To simplify
the notations, we usually denote the connected component by W when there is no confusion.

Let T X = T V /B, T Y = T W/B be the relative tangent bundles to the fibres X , Y . Let
T H V be a smooth subbundle of T V such that

T V = T H V ⊕ T X . (3.1)

Let NW/V be the normal bundle to W in V , let NY/X be the normal bundle to Y in X . Clearly
NW/V = NY/X . Let ÑY/X be a smooth subbundle of T X |W such that

T X |W = T Y ⊕ ÑY/X . (3.2)

Clearly,

T H V 
 π∗
V T B, ÑY/X 
 NY/X . (3.3)

By (3.1) and (3.2), we get

T V |W = T H V |W ⊕ T Y ⊕ ÑY/X . (3.4)

By (3.4), there is a well-defined morphism

T W

T Y
→ T H V |W ⊕ ÑY/X (3.5)

and this morphism maps T W/T Y into a subbundle of T W . Let T H W be the subbundle of
T W which is the image of T W/T Y by the morphism (3.5). Clearly,

T W = T H W ⊕ T Y . (3.6)

Note that T H W depends on the choice of ÑY/X . In general, the subbundle T H W is not equal
to T H V |W .

Let gT V be a metric on T V . Let gT W be the induced metric on T W . Let gT X , gT Y be
the induced metrics on T X , T Y . Note that even if gT V is of the type as in (2.12), in general,
gT W is not of this type.

We identity NY/X with the orthogonal bundle ÑY/X to T Y in T X |W with respect to
gT X |W . Let gNY/X be the induced metric on NY/X . On W , we have

T X |W = T Y ⊕ NY/X . (3.7)
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To the pairs (T H
πV

V , gT X ) and (T H
πW

W , gT Y ), we can associate the objects thatwe construct
in (2.13) and (2.15). In particular, T X , T Y are now equipped with connections ∇T X , ∇T Y

which preserve the metrics gT X , gT Y respectively.
Let PT Y , P NY/X be the orthogonal projections T X |W → T Y , T X |W → NY/X . By [8,

Theorem 1.9], we have

∇T Y = PT Y∇T X |Y . (3.8)

Let

∇NY/X = P NY/X∇T X (3.9)

be the connection on NY/X . Then ∇NY/X preserves the metric gNY/X . Put

∇T Y ,NY/X = ∇T Y ⊕∇NY/X . (3.10)

Then ∇T Y ,NY/X is a Euclidean connection on T X |W = T Y ⊕ NY/X .
Let G be a compact Lie group. We assume that W , V and B are G-manifolds and the

G-action commutes with the embedding and πV . Obviously, the group action commutes with
πW . We assume that G acts trivially on B. We assume that the group action preserves the
splittings (3.1) and (3.6) and all metrics and connections are G-invariant.

Let W g , V g be the fixed point sets of W , V for g ∈ G. Then πW |W g : W g → B and
πV |V g : V g → B are submersions with compact fibres Y g and X g . We assume that T Y g and
T X g are all oriented as the beginning of Sect. 2.3.

Remark 3.1 (cf. [8, Section 7.5]) Given a G-equivariant pair (T H
πW

W , gT Y ), we could take
metrics gT B and gT W on T B and T W such that gT W = π∗

W gT B ⊕ gT Y . Let gN be a G-
invariant metric on NY/X . Let∇N be a G-invariant Euclidean connection on (NY/X , gN ) and
T H N be the horizontal subbundle associated with the fibration πN : NY/X → W and ∇N .
We take gT N = π∗

N gT W ⊕ gN for T N = T H N ⊕ N . Since W intersects X orthogonally,
we could take a horizontal subbundle T H

πV
V over V such that T H

πV
V |W = T H

πW
W . Using

the partition of unity argument, we could construct G-invariant metrics gT X , gT V on T X ,
T V such that gT V = π∗

V gT B ⊕ gT X and W is a totally geodesic submanifold of V . In this
case, for any b ∈ B, the fibre Yb is a totally geodesic submanifold of Xb. It means that
∇T X |W = ∇T Y ,NY/X .

By Remark 3.1, in this paper, we will always assume that the pairs (T H
πW

W , gT Y ) and
(T H

πV
V , gT X ) satisfy the conditions that

T H
πV

V |W = T H
πW

W , ∇T X |W = ∇T Y ,NY/X . (3.11)

3.2 Embedding of the geometric families

In this subsection, we state our assumptions on the embedding of the geometric families,
which is the equivariant family case of the assumptions in [13, Section 1 b)].

Let FY := (W , EY , T H
πW

W , gT Y , hEY ,∇EY ) and FX := (V , EX , T H
πV

V , gT X , hEX ,∇EX )

be two equivariant geometric families over B such that the pairs (T H
πW

W , gT Y ) and
(T H

πV
V , gT X ) satisfy (3.11). For simplicity, we assume that for any connected component

Wα , τ
EY /S
α ≡ 1 on EY .

Assume that (NY/X , gNY/X ) has an equivariant Spinc structure. Then there exists an equiv-
ariant complex line bundle L N (cf. [23, Appendix D]) such thatw2(NY/X ) = c1(L N )mod 2,

123



Real embedding and equivariant eta forms

wherew2 is the second Stiefel–Whitney class and c1 is the first Chern class. LetS(NY/X , L N )

be the spinor bundle for L N which locally may be written as

S(NY/X , L N ) = S0(NY/X )⊗ L1/2
N , (3.12)

where S0(NY/X ) is the spinor bundle for the (possibly non-existent) spin structure on NY/X

and L1/2
N is the (possibly non-existent) square root of L N . Then the G-actions on NY/X and

L N lift to S(NY/X , L N ). For simplicity, we usually simply denote the spinor bundle by SN .
Let hL be a G-invariant Hermitian metric on L N . Let ∇L be a G-invariant Hermitian

connection on (L N , hL ). Let hSN be the equivariant Hermitian metric on SN induced by
gNY/X and hL . Let ∇SN be the equivariant Hermitian connection on SN induced by ∇NY/X

and ∇L .
From (2.19), the bundle EndC(T X)(EX ) is naturally Z2-graded with respect to τEX /S . Let

V be a smooth self-adjoint section of EndC(T X)(EX ) such that it exchanges this Z2-grading
and commutes with the G-action. Then V acts on π∗

V 	(T ∗B)⊗̂EX in the same way as the
perturbation operator A in (2.42).

We assume that on V \W ,V is invertible, and that on W , ker V has locally constant nonzero
dimension, so that ker V is a nonzero smooth Z2-graded G-equivariant vector subbundle of
EX |W . Let hkerV be the metric on ker V induced by the metric hEX |W . Let PkerV be the
orthogonal projection operator from EX |W onto ker V .

For y ∈ W , U ∈ Ty X , let ∂UV(y) be the derivative of V with respect to U in any given
smooth trivialization of EX near y ∈ W . One then verifies that PkerV∂UV(y)PkerV does
not depend on the trivialization, and only depends on the image Z of U ∈ Ty X in NY/X .
From now on, we will write ∂̇Z (V)(y) instead of PkerV∂UV(y)PkerV . Then one verifies that
∂̇Z (V)(y) is a self-adjoint element of End(ker V) and exchanges the Z2-grading.

If Z ∈ NY/X , let c̃(Z) ∈ End(S∗N ) be the transpose of c(Z) acting on SN .
Denote by N∗

C
= N∗

Y/X ⊗R C. Since L N ⊗ L∗N is an equivariant trivial bundle and since
dim NY/X is even, we have 	(N∗

C
) 
 SN ⊗̂S∗N . We equip 	(N∗

C
)⊗̂EY with the induced

metric h	(N∗
C
)⊗̂EY . For Z ∈ NY/X , c̃(Z) acts on SN ⊗̂S∗N ⊗̂EY like 1⊗ c̃(Z)⊗ 1.

Fundamental assumption Let πN : NY/X → W be the projection. Over the total space NY/X ,
we have the equivariant identification

(
π∗

N ker V, π∗
N hkerV , ∂̇Z (V)(y)

)



(
π∗

N (	(N∗
C
)⊗̂EY ), π∗

N h	(N∗
C
)⊗̂EY ,

√−1c̃(Z)
)

. (3.13)

Let ∇kerV be the equivariant Hermitian connection on ker V ,

∇kerV = PkerV∇EX |W PkerV . (3.14)

We make the assumption that under the identification (3.13),

∇kerV = ∇	(N∗
C
)⊗̂EY . (3.15)

3.3 Atiyah–Hirzebruch direct image

In this subsection, we introduce an important example of the embedding of equivariant
geometric families satisfying the fundamental assumption: the equivariant version of the
Atiyah–Hirzebruch direct image [1,21]. We assume that the base space B is compact and
adopt the notations and the assumptions in Sect. 3.1 in this subsection.
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We further assume that T Y and T X have equivariant Spinc structures. Then there exist
equivariant complex line bundles LY and L X over W and V such that w2(T Y ) = c1(LY )

mod 2 and w2(T X) = c1(L X ) mod 2. Then from the splitting (3.7), the equivariant vec-
tor bundle NY/X over W has an equivariant Spinc structure with associated equivariant
line bundle L N := L X ⊗ L−1Y . Let hLY , hL X be G-invariant Hermitian metrics on LY ,
L X and ∇LY , ∇L X be G-invariant Hermitian connections on (LY , hLY ), (L X , hL X ). Let
hL N and ∇L N be metric and connection on L N induced by hLY , hL X and ∇LY , ∇L X . Let
S(T Y , LY ), S(T X , L X ) and S(NY/X , L N ) be the spinor bundles for (T Y , LY ), (T X , L X )
and (NY/X , L N ), which we will simply denote by SY , SX and SN . Then these spinors
are G-equivariant vector bundles. Furthermore, SX |W = SY ⊗̂SN . Since dim NY/X =
dim V − dim W is even, the spinor SN is Z2-graded.

Recall that {Wα}α=1,...,k are the connected components of W . Let (μ, hμ) be a G-
equivariant Hermitian vector bundle over W with a G-invariant Hermitian connection ∇μ.
In the followings, we will describe a geometric realization of the Atiyah–Hirzebruch direct
image i ![μ] ∈ K̃ 0

G(V ) as in [1,21]. We denote by μα the restriction of μ on Wα .
For any r > 0, set Nα,r := {Z ∈ NYα/X : |Z | < r}. Then there is ε0 > 0 such that the map

(y, Z) ∈ NYα/X → expV
y (Z) defines a diffeomorphism of Nα,2ε0 on an open G-equivariant

tubular neighbourhood of Wα in V for any α. Without confusion we will also regard Nα,2ε0 as
the open G-equivariant tubular neighbourhood of W in V . We choose ε0 > 0 small enough
such that for any 1 ≤ α �= β ≤ k, Nα,2ε0 ∩ Nβ,2ε0 = ∅.

Let πα : NYα/X → Wα denote the projection of the normal bundle NYα/X on Wα . For
Z ∈ NYα/X , let c̃(Z) ∈ End(S∗Nα

) be the transpose of c(Z) acting on SNα . Let π
∗
α(S∗Nα

) be the
pull back bundle ofS∗Nα

over NYα/X . For any Z ∈ NYα/X with Z �= 0, c̃(Z) : π∗
α(S∗Nα,±)|Z →

π∗
α(S∗Nα,∓)|Z is an equivariant isomorphism at Z .
From the equivariant Serre–Swan theorem [29, Proposition 2.4], there exists a G-

equivariant Hermitian vector bundle (Eα, hEα ) such that S∗Nα,−⊗μα⊕Eα is a G-equivariant
trivial complex vector bundle over Wα . Then

c̃(Z)⊕ π∗
α IdEα : π∗

α(S∗Nα,+ ⊗ μα ⊕ Eα) → π∗
α(S∗Nα,− ⊗ μα ⊕ Eα) (3.16)

induces a G-equivariant isomorphism between two equivariant trivial vector bundles over
Nα,2ε0\Wα .

By adding the equivariant trivial bundles, we could assume that for any 1 ≤ α �=
β ≤ k, dim(S∗Nα,± ⊗ μα ⊕ Eα) = dim(S∗Nβ ,± ⊗ μβ ⊕ Eβ). Clearly, {π∗

α(S∗Nα,± ⊗ μα ⊕
Eα)|∂ Nα,2ε0

}α=1,...,k extend smoothly to two equivariant trivial complex vector bundles over
V \ ∪1≤α≤k Nα,2ε0 .

In summary, what we get is a Z2-graded Hermitian vector bundle (ξ, hξ ) such that

ξ±|Nα,ε0
= π∗

α(S∗Nα,± ⊗ μα ⊕ Eα)|Nα,ε0
,

hξ±|Nα,ε0
= π∗

α

(
hS∗

Nα,±⊗μα ⊕ hEα

)∣∣∣
Nα,ε0

,
(3.17)

where hS∗
Nα,±⊗μα is the equivariant Hermitian metric on S∗Nα,± ⊗ μα induced by gNα , hL Nα

and hμα . Let ∇Eα be a G-invariant Hermitian connection on (Eα, hEα ). We can also get a
G-invariant Z2-graded Hermitian connection∇ξ = ∇ξ+ ⊕∇ξ− on ξ = ξ+⊕ ξ− over V such
that

∇ξ±|Nα,ε0
= π∗

α

(
∇S∗

Nα,±⊗μα ⊕∇Eα

)
, (3.18)
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where ∇S∗
Nα,±⊗μα is the equivariant Hermitian connection on S∗Nα,± ⊗ μα induced by ∇Nα ,

∇L Nα and ∇μα .
It is easy to see that there exists an equivariant self-adjoint automorphism V of SX ⊗̂ξ ,

which exchanges the Z2-grading of ξ , such that

V|Nα,ε0
= IdSX ⊗̂

(√−1 c̃(Z)⊕ π∗IdEα

)
. (3.19)

From the construction above, we could see that V is invertible on V \W and

(ker V)|W = SX |W ⊗̂S∗N ⊗ μ = SY ⊗̂SN ⊗̂S∗N ⊗ μ = SY ⊗̂	(N∗
C
)⊗ μ (3.20)

is an equivariant vector bundle overW . Let PkerV be the orthogonal projection fromSX ⊗̂ξ |W
onto ker V and ∇kerV = PkerV∇SX ⊗̂ξ |W PkerV . From (3.11), we have

∇kerV = ∇SY ⊗̂	(N∗
C
)⊗μ. (3.21)

Here [ξ+] − [ξ−] ∈ K̃ 0
G(V ) is an equivariant version of the Atiyah–Hirzebruch direct

image i ![μ] in [1]. In this construction, let EY = SY ⊗ μ and EX ,± = SX ⊗̂ξ±. Then it
satisfies all assumptions in Sect. 3.2.

3.4 Main result

In this subsection, we state our main result.
Let FY and FX be the equivariant geometric families satisfying the assumptions in

Sect. 3.2.
For T ≥ 0, let ∇EX ,T be the superconnection on EX given by

∇EX ,T = ∇EX +√
TV. (3.22)

Let REX /S
T be the twisting curvature of∇EX ,T as in (2.32). Let dim(NX g/X ) = �2. For T > 0,

by [28] and (2.31), we have the equivariant version of [13, (1.17)]:

∂

∂T
TrEX /S

[
σ�2(g

EX ) exp
(
−REX /S

T |V g

)]

= −d TrEX /S
[
σ�2(g

EX )
V|V g

2
√

T
exp

(
−REX /S

T |V g

)]
. (3.23)

Recall that ψ is defined in (2.37). The proof of the following theorem is the same as those
of [7, Theorem 6.3] and [13, Theorem 1.2].

Theorem 3.2 For any compact set K ⊂ V g, there exists C > 0, such that if ω ∈ �∗(V g)

has support in K ,∣∣∣∣∣
∫

X g
ω · 2�2/2

det1/2(1− g|NXg/X
)
ψV g TrEX /S

[
σ�2(g

EX ) exp
(
−REX /S

T |V g

)]

−
∫

Y g
ω · Â−1

g (NY/X ,∇NY/X ) chg(EY /S,∇EY )

∣∣∣∣ ≤ C√
T
‖ω‖C 1(K ), (3.24)

and ∣∣∣∣
∫

X g
ω · ψV g TrEX /S

[
σ�2(g

EX )
V|V g

2
√

T
exp

(
−REX /S

T |V g

)]∣∣∣∣ ≤ C

T 3/2 ‖ω‖C 1(K ). (3.25)
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Now we could extend the Bismut–Zhang current in [13, Definition 1.3] to the equivariant
case.

Definition 3.3 The equivariant Bismut–Zhang current γ X
g (FY ,FX ) over V g is defined by

γ X
g (FY ,FX ) = 1

2
√

π
√−1 ·

2�2/2

det1/2(1− g|NXg/X
)

·
∫ ∞

0
ψV g TrEX /S

[
σ�2(g

EX )V|V g exp
(
−REX /S

T |V g

)] dT

2
√

T
. (3.26)

By Theorem 3.2, the current γ X
g (FY ,FX ) is well-defined.

Let δW g be the current of integration over the submanifold W g in V g . By integrating (3.23)
and using Theorem 3.2, we have the following equivariant extension of [13, Theorem 1.4].

Theorem 3.4 The following equation of currents on V g holds

dγ X
g (FY ,FX ) = chg(EX/S,∇EX )

− Â−1
g (NY/X ,∇NY/X ) chg(EY /S,∇EY )δW g . (3.27)

Remark 3.5 Similarly as in [13], the wave front set WF(γ X
g ) of the current γ X

g is included in

N∗
W g/V g and γ X

g (FY ,FX ) is a locally integrable current.

Proposition 3.6 Let AY be a perturbation operator with respect to D(FY ). Then we could
construct a family of bounded pseudodifferential operator AT ,Y on FX , depending continu-
ously on T ≥ 1, such that the norm of AT ,Y is the same as that of AY for any T ≥ 1 and for
any compact submanifold K of B, there exists T0 ≥ 1 depending on K such that TV+AT ,Y

is the perturbation operator with respect to D(FX ) over K for T ≥ T0.

Proof Following the arguments in [11, Section 8, 9] and [13, Section 4b)] word by word, we
could construct a smooth family of equivariant linear isometric embeddings

JT ,b : L2(Yb, EY |Yb ) → L2(Xb, EX |Xb ) (3.28)

for b ∈ B, as in [8, Definition 9.12].
Let ET ,b be the image of L2(Yb, EY |Yb ) in L2(Xb, EX |Xb ) by JT ,b. Let E

⊥
T ,b be

the orthogonal space to ET ,b in L2(Xb, EX |Xb ). Since JT ,b is an isometric embedding,
JT ,b : L2(Yb, EY |Yb ) → ET is invertible. We extend the domain of J−1T ,b to L2(Xb, EX |Xb )

linearly such that it vanishes on E⊥T ,b.
Let AT ,Y = {AT ,Y ,b}b∈B be the family of bounded pseudodifferential operators

AT ,Y ,b := JT ,bAY ,b J−1T ,b : L2(Xb, EX |Xb ) → L2(Xb, EX |Xb ). (3.29)

Then AT ,Y is a smooth family of equivariant self-adjoint operators. From the definition of
the perturbation operator AY , we see that AT ,Y commutes (resp. anti-commutes) with the
Z2-grading τE of EX when the fibres are odd (resp. even) dimensional. Since JT is isometric,
the L2-norm of AT ,Y is the same as that of AY .

Since JT is continuous with respect to T , so is the operator AT ,Y . We only need to prove
that D(FX )+ TV +AT ,Y over K is invertible for T large enough.

Over a compact submanifold K of B, the same estimates of D(FX )+ TV as [11, Theo-
rem 9.8, 9.10, 9.11] hold. Since D(FY )+AY is invertible, the arguments in [11, Section 9], in
which we replace D(FY ) and D(FX )+TV by D(FY )+AY and D(FX )+TV+AT ,Y , imply
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that there exists T0 ≥ 1, depending on K , such that for any T ≥ T0, D(FX )+ TV +AT ,Y

is invertible. Moreover, the absolutely value of the spectrum of D(FX )+ TV +AT ,Y has a
uniformly positive lower bound for T ≥ T0.

The proof of our proposition is completed. � 
Now we state our main result of this paper.

Theorem 3.7 Let AY and AX be the perturbation operators with respect to D(FY ) and
D(FX ) respectively. Let AT ,Y be the operator constructed in Proposition 3.6. Then for any
compact submanifold K of B, there exists T0 > 2 depending on K such that for any T ≥ T0,
modulo exact forms on B, over K , we have

η̃g(FX ,AX ) = η̃g(FY ,AY )+
∫

X g
Âg(T X ,∇T X ) γ X

g (FY ,FX )

+ chg(sfG{D(FX )+AX , D(FX )+ TV +AT ,Y }). (3.30)

Observe that since we only need to prove (3.30) over a compact submanifold, in the proof
of Theorem 3.7, we may assume that B is compact.

If the base space is a point, and if Y and X are odd dimensional spin manifolds, then
there exist equivariant complex vector bundles μ and ξ± such that EY = SY ⊗ μ and
EX ,± = SX ⊗̂ξ±. The following corollary is a direct consequence of Theorem 3.7.

Corollary 3.8 There exists x ∈ R(G), the representation ring of G, such that

ηg(X , ξ+)− ηg(X , ξ−) = ηg(Y , μ)

+
∫

X g
Âg(T X ,∇T X ) γ X

g (FY ,FX )+ χg(x). (3.31)

Here x could be written as an equivariant spectral flow, χg(x) is the character of g on x and
ηg is the equivariant reduced APS eta invariant.

When g = 1, Corollary 3.8 is the modification of the Bismut–Zhang embedding formula
by expressing the modZ term as a spectral flow. Note that in [19, Theorem 4.1], the authors
give an index interpretation of the modZ term of the embedding formula when the manifolds
are the boundaries. It is also interesting to look for the equivariant family extension of that
formula.

Corollary 3.9 Let X be an odd-dimensional compact G-equivariant Spinc manifold. For
g ∈ G, let (μ, hμ) be an equivariant Hermitian vector bundle over X g with a G-invariant
Hermitian connection∇μ. Then there exist aZ2-graded equivariant Hermitian vector bundle
(ξ, hξ ) over X with a G-invariant Hermitian connection ∇ξ and x ∈ R(G), such that

ηg(X , ξ+)− ηg(X , ξ−) = ηg(X g, μ)+ χg(x). (3.32)

Proof Note that X g is naturally totally geodesic in X . Take (ξ, hξ ,∇ξ ) as the equivariant
Atiyah–Hirzebruch direct image of (μ, hμ,∇μ) as in Sect. 3.3. We only need to notice that
V|X g = 0 in this case. It implies that γ X

g (FX g ,FX ) = 0. � 
Remark 3.10 Note that in [22], the authors establish an index theorem for differential K-
theory. The key analytical tool is the Bismut–Zhang embedding formula of the reduced
eta invariants in [13]. Using Corollary 3.8, the index theorem there could be extended to
the equivariant case whenever the equivariant differential K-theory is well-defined. Using
Theorem 3.7, we can also get the compatibility of the push-forward map in equivariant
differential K-theory along the proper submersion and the embedding under the model of
Bunck–Schick [15,16,24]. We will study these in the subsequent paper.
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4 Proof of main result

In this section, we prove our main result Theorem 3.7. In Sect. 4.1, we prove Theorem 3.7
when the base space is a point using some intermediary results along the lines of [13], the
proofs of which rely on almost identical arguments of [7,13]. In Sect. 4.2, we explain how to
use the functoriality to reduce the proof of Theorem 3.7 to the case considered in Sect. 4.1.

4.1 Embedding of equivariant eta invariants

In this subsection, we will prove our main result when B is a point and dim X is odd. Recall
that in (3.11), we have already assumed that Y is totally geodesic in X .

Theorem 4.1 Assume that B is a point and dim X is odd. Then there exists T0 > 2 such that
for any T ≥ T0, we have

η̃g(FX ,AX ) = η̃g(FY ,AY )+
∫

X g
Âg(T X ,∇T X ) γ X

g (FY ,FX )

+ chg(sfG{D(FX )+AX , D(FX )+ TV +AT ,Y }). (4.1)

Set

Du,T = √
u(D(FX )+ TV + χ(

√
u)((1− χ(T ))AX + χ(T )AT ,Y )), (4.2)

where χ is the cut-off function defined in (2.41). Let

Bu2,T = Du2,T + dT ∧ ∂

∂T
+ du ∧ ∂

∂u
. (4.3)

Definition 4.2 Wedefineβg = du∧βu
g+dT∧βT

g to be the part ofπ−1/2 Trs[g exp(−B2
u2,T

)]
of degree one with respect to the coordinates (T , u), with functions βu

g , β
T
g : R+,T ×R+,u →

R.

From (4.3), we have

βu
g (T , u) = − 1√

π
Trs

[
g
∂ Du2,T

∂u
exp(−D2

u2,T )

]
,

βT
g (T , u) = − 1√

π
Trs

[
g
∂ Du2,T

∂T
exp(−D2

u2,T )

]
.

(4.4)

When 0 < u < 1, χ(u) = 0. In this case,

βu
g (T , u) = − 1√

π
Trs

[
g(D(FX )+ TV) exp(−u2(D(FX )+ TV)2)

]
,

βT
g (T , u) = − u√

π
Trs

[
gV exp(−u2(D(FX )+ TV)2)

]
.

(4.5)

From (2.47),

η̃g(FX ,AX ) = −
∫ +∞

0
βu

g (0, u)du. (4.6)

As in [13, Theorem 3.4] (see also [25, Proposition 4.2]), we have(
du ∧ ∂

∂u
+ dT ∧ ∂

∂T

)
βg = 0. (4.7)
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Let T0 be the constant in Proposition 3.6. Take ε, A, T1, 0 < ε < 1 ≤ A < ∞, T0 ≤
T1 < ∞. Let 
 = 
ε,A,T1 be the oriented contour in R+,T × R+,u .

0

U

u

T

ε

A

T0 T1


1


4


2


3




The contour 
 is made of four oriented pieces 
1, . . . , 
4 indicated in the above picture.
For 1 ≤ k ≤ 4, set I 0k = ∫


k
βg . Then by Stocks’ formula and (4.7),

4∑
k=1

I 0k =
∫

∂U
βg =

∫
U

(
du ∧ ∂

∂u
+ dT ∧ ∂

∂T

)
βg = 0. (4.8)

For any g ∈ G, set

βY
g (u) = 1√

π
Tr

[
g exp

(
−

(
u(D(FY )+ χ(u)AY )+ du ∧ ∂

∂u

)2
)]du

. (4.9)

Then by Definition 2.4,

η̃g(FY ,AY ) = −
∫ +∞

0
βY

g (u)du. (4.10)

We now establish some estimates of βg .

Theorem 4.3 (i) For any u > 0, we have

lim
T→∞βu

g (T , u) = βY
g (u). (4.11)

(ii) For 0 < u1 < u2 fixed, there exists C > 0 such that, for u ∈ [u1, u2], T ≥ 2, we have

|βu
g (T , u)| ≤ C . (4.12)

(iii) We have the following identity:

lim
T→+∞

∫ ∞

2
βu

g (T , u)du =
∫ ∞

2
βY

g (u)du. (4.13)

Proof If P is an operator, let Spec(P) be the spectrumof P . From the proof of Proposition 3.6,
there exist T0 ≥ 1, c > 0, such that for T ≥ T0,

Spec(D(FX )+ TV +AT ,Y ) ∩ [−c, c] = ∅. (4.14)

Recall that E0
T is the image of JT defined in (3.28). For δ ∈ [0, 1], we write D(FX ) +

TV + δAT ,Y in matrix form with respect to the splitting by E0
T ⊕ E

0,⊥
T ,

D(FX )+ TV + δAT ,Y =
(

AT ,1 + δAT ,Y AT ,2

AT ,3 AT ,4

)
. (4.15)
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By [11, Theorem 9.8] and (3.29), as T →+∞, we have

J−1T (AT ,1 + δAT ,Y )JT = D(FY )+ δAY + O

(
1√
T

)
. (4.16)

Set

T := {δ ∈ [0, 1] : D(FY )+ δAY is not invertible}. (4.17)

Then T is a closed subset of [0, 1].
We firstly assume that T is not empty. Fix δ0 ∈ T . There exists C(δ0) > 0 such that

Spec(D(FY )+ δ0AY ) ∩ [−2C(δ0), 2C(δ0)] = {0}. (4.18)

Since the eigenvalues are continuous with respect to δ, there exists ε > 0 small enough, such
that when δ ∈ (δ0 − ε, δ0 + ε),

Spec(D(FY )+ δAY ) ∩ [−C(δ0), C(δ0)] ⊂ (−C(δ0)/4, C(δ0)/4) (4.19)

and

Spec(D(FY )+ δAY ) ∩ (−∞,−C(δ0)] ∪ [C(δ0),+∞)

⊂ (−∞,−7C(δ0)/4) ∪ (7C(δ0)/4,+∞). (4.20)

Then following the same process in [11, Section 9] and [13, Section 4 b)] by replacing D(FY )

and D(FX )+ TV by D(FY )+ δAY and D(FX )+ TV + δAT ,Y , for α > 0 fixed, when T
is large enough, there exists C > 0, such that for any δ ∈ (δ0 − ε, δ0 + ε),∣∣Trs

[
g(D(FX )+ TV + δAT ,Y ) exp

(−α(D(FX )+ TV + δAT ,Y )2
)]

− Tr
[
g(D(FY )+ δAY ) exp

(−α(D(FY )+ δAY )2
)]∣∣ ≤ C√

T
,

∣∣Trs
[
gAT ,Y exp

(−α(D(FX )+ TV + δAT ,Y )2
)]

− Tr
[
gAY exp

(−α(D(FY )+ δAY )2
)]∣∣ ≤ C√

T
.

(4.21)

Since T is compact, there exists an open neighborhood U of T in [0, 1] such that (4.21)
hold uniformly for δ ∈ U . For δ ∈ [0, 1]\U , there is a uniformly lower positive bound of
the absolute value of the spectrum of D(FY )+ δAY . So the process of [11, Section 9] also
works. It means that (4.21) hold uniformly for δ ∈ [0, 1].

If T = ∅, it means that there is a uniformly lower positive bound of the absolute value of
the spectrum of D(FY )+ δAY for δ ∈ [0, 1]. Thus (4.21) holds uniformly.

In summary, for α > 0 fixed, when T is large enough, there exists C > 0, such that for
any δ ∈ [0, 1], (4.21) holds.

Therefore, from Definition 4.2, (4.2), (4.3) and (4.9), we get Theorem 4.3(i) and (ii).
For u ≥ 2 and T ≥ T0, from Definition 4.2, (4.2) and (4.3), we have

βu
g (T , u) = − 1√

π
Trs

[
g(D(FX )+ TV +AT ,Y )

× exp(−u2(D(FX )+ TV +AT ,Y )2)
]
. (4.22)

From [5, Proposition 2.37], (4.14) and (4.22), there exists CT > 0, depending on T ≥ T0,
such that for u large enough,

|βu
g (T , u)| ≤ CT exp(−cu2). (4.23)
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From the first inequality of (4.21) for δ = 1, we see that CT in (4.23) is uniformly bounded
for T ≥ T0. Thus (iii) follows from (i) and the dominated convergence theorem.

The proof of our theorem is completed. � 
Theorem 4.4 Let T0 be the constant in Proposition 3.6. When u →+∞, we have

lim
u→+∞

∫ T0

0
βT

g (T , u)dT = chg(sfG{D(FX )+AX , D(FX )+ T0V +AT0,Y }), (4.24)

and

lim
u→+∞

∫ ∞

T0
βT

g (T , u)dT = 0. (4.25)

Proof Set

D′
u,T = √

u(D(FX )+ χ(
√

u)(TV + ((1− χ(T ))AX + χ(T )AT ,Y ))) (4.26)

and

βT
g (T , u)′ = − 1√

π
Trs

[
g
∂ D′

u2,T

∂T
exp(−(D′

u2,T )2)

]
. (4.27)

Note that when u > 2,

βT
g (T , u)′ = βT

g (T , u). (4.28)

The proof of the anomaly formula Theorem 2.6 (cf. [24, Theorem 2.17]) show that

lim
u→+∞

∫ T0

0
βT

g (T , u)dT = lim
u→+∞

∫ T0

0
βT

g (T , u)′dT

= η̃g(FX ,AX )− η̃g(FX , T0V +AT0,Y )

= chg(sfG{D(FX )+AX , D(FX )+ T0V +AT0,Y }). (4.29)

Since D(FX ) + TV + AT ,Y is invertible for T ≥ T0, the proof of (4.25) is the same as
[24, Theorem 2.22]. Indeed, as in [25, (6.8)], for u′ > 0 fixed, there exist C > 0, T ′ ≥ T0
and δ > 0 such that for u ≥ u′ and T ≥ T ′, we have

|βT
g (T , u)| ≤ C

T 1+δ
exp(−cu2). (4.30)

The proof of Theorem 4.4 is completed. � 
Theorem 4.5 (i) For any u ∈ (0, 1], there exist C > 0 and δ > 0 such that, for T large

enough, we have

|βT
g (T , u)| ≤ C

T 1+δ
. (4.31)

(ii) There exist C > 0, γ ∈ (0, 1] such that for u ∈ (0, 1], 0 ≤ T ≤ u−1,∣∣∣∣∣u−1βT
g

(
T

u
, u

)
+ 1

2
√

π
√−1 ·

2�2/2

det1/2(1− g|NXg/X
)

∫
X g

Âg(T X ,∇T X )

·ψX g TrEX /S
[
σ�2(g

EX )V|X g exp
(
−REX /S

T 2 |X g

)]∣∣∣ ≤ C(u(1+ T ))γ

sup{T , 1} . (4.32)
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(iii) For any T > 0,

lim
u→0

u−2βT
g (T /u2, u) = 0. (4.33)

(iv) There exist C > 0, δ ∈ (0, 1] such that for u ∈ (0, 1], T ≥ 1,

∣∣∣u−2βT
g (T /u2, u)

∣∣∣ ≤ C

T 1+δ
. (4.34)

Proof It is easy to see that (i) follows directly from (4.30).
Note that in this theorem, u ∈ (0, 1]. By (4.5), the perturbation operator does not appear.

So the proof of (ii)–(iv) here are totally the same as that of [13, Theorem 3.10–3.12] except
for replacing the reference of [11] there by the corresponding reference of [7].

Remark that the setting of this paper uses the language of Clifford modules, not the spin
case in the references. However, there is no additional difficulty for this differences. The
reason is that in each proof of Theorem 4.5(ii)–(iv), we localize the problem first. Locally,
all manifolds are spin and the Clifford module could be written as (2.20).

The proof of Theorem 4.5 is completed. � 

Now we use the estimates in Theorems 4.3–4.5 to prove Theorem 4.1.

Proof of Theorem 4.1 From (4.8), we know that

∫ A

ε

βu
g (T1, u)du −

∫ T1

0
βT

g (T , A)dT −
∫ A

ε

βu
g (0, u)du +

∫ T1

0
βT

g (T , ε)dT

= I 01 + I 02 + I 03 + I 04 = 0. (4.35)

We take the limits A → +∞, T1 → +∞ and then ε → 0 in the indicated order. Let I k
j ,

j = 1, 2, 3, 4, k = 1, 2, 3 denote the value of the part I 0j after the kth limit.
From Theorem 4.3, (4.10) and the dominated convergence theorem, we conclude that

I 31 = −η̃g(FY ,AY ). (4.36)

Furthermore, by Theorem 4.4, we get

I 32 = − chg(sfG{D(FX )+AX , D(FX )+ T0V +AT0,Y }). (4.37)

From (4.6), we obtain that

I 33 = η̃g(FX ,AX ). (4.38)

Finally, we calculate the last part. By definition,

I 14 = I 04 =
∫ T1

0
βT

g (T , ε)dT . (4.39)

As T1 →+∞, by Theorem 4.5(i),

I 24 =
∫ +∞

0
βT

g (T , ε)dT =
∫ +∞

0
ε−1βT

g (T /ε, ε)dT . (4.40)
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Set

K1 =
∫ 1

0
ε−1βT

g (T /ε, ε)dT ,

K2 =
∫ 1

ε

ε−2βT
g (T /ε2, ε)dT ,

K3 =
∫ +∞

1
ε−2βT

g (T /ε2, ε)dT .

(4.41)

Clearly,

I 24 = K1 + K2 + K3. (4.42)

To simplify the notation, we denote by

D(T ) := 1

2
√

π
√−1

2�2/2

det1/2(1− g|NXg/X
)

·ψX g TrEX /S
[
σ�2(g

EX )V|X g exp
(
−REX /S

T 2 |X g

)]
. (4.43)

Then by Definition 3.3, after changing the variable, we have

γ X
g (FY ,FX ) =

∫ ∞

0
D(T )dT . (4.44)

As ε → 0, by Theorem 4.5(ii),

K1 →−
∫

X g
Âg(T X ,∇T X ) ·

∫ 1

0
D(T )dT . (4.45)

We write K2 in the form

K2 =
∫ 1

ε

T

ε

{
ε−1βT

g (T /ε2, ε)+
∫

X g
Âg(T X ,∇T X )D(T /ε)

}
dT

T

−
∫

X g
Âg(T X ,∇T X )

∫ ε−1

1
D(T )dT . (4.46)

By Theorem 4.5(ii), there exist C > 0, γ ∈ (0, 1] such that for 0 < ε ≤ T ≤ 1
∣∣∣∣T

ε

{
ε−1βT

g (T /ε2, ε)+
∫

X g
Âg(T X ,∇T X )D(T /ε)

}∣∣∣∣
≤ C

(
ε

(
1+ T

ε

))γ

≤ C(2T )γ . (4.47)

Using Theorem 4.5(iii), (3.25), (4.47) and the dominated convergence theorem, as ε → 0,

K2 →−
∫

X g
Âg(T X ,∇T X )

∫ +∞

1
D(T )dT . (4.48)

Using Theorem 4.5(iii), (iv) and the dominated convergence theorem, we see that as
ε → 0,

K3 → 0. (4.49)
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Combining Definition 3.3, (4.42), (4.45), (4.48) and (4.49), we see that as ε → 0,

I 34 = −
∫

X g
Âg(T X ,∇T X ) γ X

g (FY ,FX ). (4.50)

Thus (4.1) follows from (4.35)–(4.38) and (4.50).
The proof of Theorem 4.1 is completed. � 

4.2 Proof of Theorem 3.7

In this subsection, we use the functoriality of the equivariant eta forms Theorem 2.7 to reduce
the proof of Theorem 3.7 to the case when the base manifold is a point.1 Recall that we may
assume that B is compact.

Lemma 4.6 There exist a Z2-graded self-adjoint C(T B)-module (EB , hEB ) and a positive
integer q ∈ Z+ such that

Â(T B,∇T B) ch(EB/S,∇EB )− q

is an exact form for any Euclidean connection ∇T B and Clifford connection ∇EB .

Proof Let (E0, hE0) be a Z2-graded self-adjoint C(T B)-module. Let ∇E0 be a Clifford con-
nection on (E0, hE0). Then since the G-action is trivial on B, from the definition of the
Â-genus and (2.33), there exists m ∈ Z such that

Â(T B,∇T B) · ch(E0/S,∇E0) = m + α, (4.51)

where α ∈ �even(B) is a closed form and degα ≥ 2. We choose E0 such that m > 0.2

Since α is nilpotent,

{Â(T B,∇T B) ch(E0/S,∇E0)}−1 =
∞∑

k=0
(−1)k αk

mk+1 (4.52)

is a closed well-defined even differential form over B. From the isomorphism

ch : K 0(B)⊗ R

→ H even(B,R), (4.53)

there exist positive real number q ∈ R and virtual complex vector bundle E = E+ − E−,
such that q−1 ch([E]) = [{Â(T B,∇T B) ch(E0/S,∇E0)}−1]. Let ∇E be a connection
on E . Let EB = E0⊗̂E and ∇EB = ∇E0 ⊗ 1 + 1 ⊗ ∇E . Then ch(EB/S,∇EB ) =
ch(E0/S,∇E0) ch(E,∇E ). So we have

[Â(T B,∇T B) ch(EB/S,∇EB )] = q ∈ H even(B,R).

From (4.51), we have q ∈ Z+.
The proof of Lemma 4.6 is completed. � 
Let (EB , hEB )be theC(T B)-module taken inLemma4.6.Let∇EB be aClifford connection

on (EB , hEB ). Thus

FV = (V , π∗
V EB⊗̂EX , π∗

V gT B ⊕ gT X , π∗
V hEB ⊗ hEX , π∗

V∇EB ⊗ 1+ 1⊗∇EX ) (4.54)

1 The author thanks Prof. Xiaonan Ma for pointing out this simplification, which is related to a remark in [8,
Section 7.5].
2 One example is the exterior bundle with the Z2-grading induced by the Hodge star operator (see e.g., [5,
pp. 150]).
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is an equivariant geometric family over a point. Let

FV ,t = (V , π∗
V EB⊗̂EX , gT V

t , π∗
V hEB ⊗ hEX ,∇EV

t ) (4.55)

be the rescaled equivariant geometric family over a point constructed in the same way as in
(2.60).

Lemma 4.7 There exist t0 > 0 and T ′ ≥ 1, such that for any t ≥ t0 and T ≥ T ′, the operator
D(FV ,t )+ tTV + tAT ,Y is invertible.

Proof Let f1, . . . , fl be a locally orthonormal basis of T B. Let f H
p be the horizontal lift of

f p on T H V . Let e1, . . . , en be a locally orthonormal basis of T X . Set

DB
t = c( f p)∇E X ,u

f p
+ 1

8t
〈[ f H

p , f H
q ], ei 〉c(ei )c( f p)c( fq). (4.56)

By [25, (5.6)], we have

D(FV ,t )+ tTV + tAT ,Y = t(D(FX )+ TV +AT ,Y )+ DB
t . (4.57)

From Proposition 3.6, since B is compact, there exist c > 0 and T ′ > 0, such that for any
s ∈ 	(T ∗B)⊗̂EX , T ≥ T ′,

‖(D(FX )+ TV +AT ,Y )s‖20 ≥ c2‖s‖20. (4.58)

Let

Rt,T := t[D(FX )+ TV +AT ,Y , DB
t ] + DB,2

t . (4.59)

We have

(D(FV ,t )+ tTV + tAT ,Y )2 = t2(D(FX )+ TV +AT ,Y )2 + Rt,T . (4.60)

Let | · |T ,1 be the norm defined in the same way as [8, Definition 9.13]. In particular,

‖s‖0 ≤ |s|T ,1. (4.61)

Note that the perturbation operator AT ,Y is uniformly bounded with respect to T ≥ 1.
From the arguments in the proof of [8, Theorem 9.14], we could obtain that there exist
C1, C2, C3 > 0, such that for T ≥ 1, t ≥ 1, s ∈ 	(T ∗B)⊗̂EX ,

‖(D(FX )+ TV +AT ,Y )s‖20 ≥ C1|s|2T ,1 − C2‖s‖20,
|〈Rt,T s, s〉0| ≤ C3 t ‖s‖0 · |s|T ,1.

(4.62)

Take α = c2/(c2 + 2C2). By (4.58)–(4.62), for T ≥ T ′, t ≥ 1, we have

‖(D(FV ,t )+ tTV + tAT ,Y )s‖20 = |〈t2(D(FX )+ TV +AT ,Y )2s + Rt,T s, s〉0|
≥ (1− α)t2‖(D(FX )+ TV +AT ,Y )s‖20
+αt2‖(D(FX )+ TV +AT ,Y )s‖20 − |〈Rt,T s, s〉0|

≥ (1− α)c2t2‖s‖20 + αC1t2|s|2T ,1 − αC2t2‖s‖20 − C3t‖s‖0 · |s|T ,1

≥ αC2t2‖s‖20 + t(αC1t − C3)|s|2T ,1. (4.63)

Take t0 = max{2C3/αC1, 1}. For any t ≥ t0, T ≥ T ′, there exists C > 0, such that

‖(D(FV ,t )+ tTV + tAT ,Y )s‖20 ≥ Ct2‖s‖20. (4.64)
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Since D(FV ,t ) + tTV + tAT ,Y is self-adjoint, by (4.64), it is surjective. Thus D(FV ,t ) +
tTV + tAT ,Y is invertible.

The proof of Lemma 4.7 is completed. � 
Let

FW = (W , π∗
WEB⊗̂EY , π∗

W gT B ⊕ gT Y , π∗
W hEB ⊗ hEY , π∗

W∇EB ⊗ 1+ 1⊗∇EY ) (4.65)

be the equivariant geometric family over a point. Let

FW ,t = (W , π∗
WEB⊗̂EY , gT W

t , π∗
V hEB ⊗ hEY ,∇EW

t ) (4.66)

be the rescaled equivariant geometric family constructed in the same way as in (2.60) and
(4.55).

Let t0 be the constant taking in Lemma 4.7. We may assume that when t ≥ t0, D(FW ,t )+
1⊗̂tAY is invertible by the arguments before Theorem 2.7. By Theorem 2.7 and Lemma 4.7,
we have

η̃g(FW ,t0 , 1⊗̂t0AY ) =
∫

B
Â(T B,∇T B) ch(EB/S,∇EB ) η̃g(FY ,AY )

−
∫

W g

(˜̂Ag · c̃hg

) (
∇T W

t0 ,∇T B,T Y ,∇EW
t0 , 0∇EW

)
(4.67)

and

η̃g(FV ,t0 , 1⊗̂(t0T ′V + t0AT ′,Y ))

=
∫

B
Â(T B,∇T B) ch(EB/S,∇EB ) η̃g(FX , T ′V +AT ′,Y )

−
∫

V g

(˜̂Ag · c̃hg

) (
∇T V

t0 ,∇T B,T X ,∇EV
t0 , 0∇EV

)
. (4.68)

Set

�B = η̃g(FX , T ′V + AT ′,Y )− η̃g(FY ,AY )

−
∫

X g
Âg(T X ,∇T X ) γ X

g (FY ,FX ) ∈ �∗(B,C)/Imd. (4.69)

From [5, (1.17)], Theorem 3.4 and (2.45), we have d B�B = 0.
Recall thatV ∈ EndC(T X)(EX ) satisfies the fundamental assumption (3.13) with respect to

FY andFX . Let 1⊗̂V is the extension ofV onπ∗
V EB⊗̂EX . Then 1⊗̂V satisfies the fundamental

assumption (3.13) with respect to FW and FV . Furthermore, 1⊗̂tV satisfies the fundamental
assumption (3.13) with respect to FW ,t and FV ,t . Observe that γ V

g (FW ,t ,FV ,t ) does not

depend on t . We also denote it by γ V
g (FW ,FV ).

From Theorem 4.1, if dim V is odd, there exists T0 > 0 such that

η̃g(FV ,t0 ,AV ) = η̃g(FW ,t0 , 1⊗̂t0AY )+
∫

V g
Âg(T X ,∇T X

t0 ) γ X
g (FW ,FV )

+ chg(sfG{D(FV ,t0)+AV , D(FV ,t0)+ 1⊗̂(T0t0V + t0AT0,Y )}).
(4.70)

We may assume that T0 ≥ T ′, which is determined in Lemma 4.7. By anomaly formula
Theorem 2.6, we have
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η̃g(FV ,t0 , 1⊗̂(T0t0V + t0AT0,Y )) = η̃g(FW ,t0 , 1⊗̂t0AY )

+
∫

V g
Âg(T V ,∇T V

t0 ) γ V
g (FW ,FV ). (4.71)

Note that if dim V is even, (4.71) also holds, because in this case all terms in (4.71) vanish.
From the anomaly formula Theorem 2.6, Lemma 4.7 and (4.71), for t > t0, we have∫

V g

(˜̂Ag · c̃hg

) (
∇T V

t0 ,∇T V
t ,∇EV

t0 ,∇EV
t

)

=
∫

W g

(˜̂Ag · c̃hg

) (
∇T W

t0 ,∇T W
t ,∇EW

t0 ,∇EW
t

)

−
∫

V g
Âg(T V ,∇T V

t0 ) γ V
g (FW ,FV )+

∫
V g

Âg(T V ,∇T V
t ) γ V

g (FW ,FV ). (4.72)

Note that locally the manifolds are spin. From [25, Proposition 4.5] and the arguments in
[25, Section 5.5], we have

lim
t→+∞

(˜̂Ag · c̃hg

) (
∇T V

t0 ,∇T V
t ,∇EV

t0 ,∇EV
t

)

=
(˜̂Ag · c̃hg

) (
∇T V

t0 ,∇T B,T X ,∇EV
t0 , 0∇EV

)
(4.73)

and

lim
t→+∞ Âg(T V ,∇T V

t ) = Âg(T V ,∇T B,T X )

= π∗
V Â(T B,∇T B) · Âg(T X ,∇T X ). (4.74)

By Definition 3.3, we have

γ V
g (FW ,FV ) = ch(EB/S,∇EB )γ X

g (FY ,FX ). (4.75)

From Lemma 4.6 and (4.67)–(4.75), since B is compact, we have∫
B

�B = q−1 ·
∫

B
Â(T B,∇T B) ch(EB/S,∇EB ) ·�B = 0. (4.76)

Let K be a compact oriented submanifold of B. Let FY |K and FX |K be the restrictions
of FY and FX on K . Let T0 ≥ 1 be the constant determined in Proposition 3.6 associated
with B. Then (TV +AT ,Y )|K is the perturbation operator with respect to D(FX |K ) over K
for T ≥ T0. Set

�K = η̃g(FX |K , (T0V + AT0,Y )|K )− η̃g(FY |K ,AY |K )

+
∫

X g
Âg(T X ,∇T X ) γ X

g (FY |K ,FX |K ) ∈ �∗(K ,C)/Imd. (4.77)

From Definition 2.4 and 3.3, we could see that
∫

K �B = ∫
K �K .

On the other hand, from (4.76), we have
∫

K �K = 0. So for any compact oriented
submanifold K of B, we have ∫

K
�B = 0. (4.78)

By a result of Thom [30, Theorem 2.29], for any homology class h ∈ H∗(B,Z), there is
n ∈ Z and a compact oriented submanifold K such that K presents nh. Thus �B is exact on
B. Therefore, we obtain Theorem 3.7 from the anomaly formula Theorem 2.6.

The proof of our main result is completed.
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